首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5 wt.% Zr-doped In2O3 (Zr-In2O3) films with thicknesses from 95 to 220 nm were grown on 90 nm-thick ZnO-buffered sapphire (0001) substrates by radio-frequency magnetron sputtering in an oxygen-deficient atmosphere. The dependence on thickness of the structural information and electrical properties of the Zr-In2O3 films on the ZnO-fuffered sapphire substrates was studied. The X-ray diffraction patterns show that the (002)-textured ZnO buffer-layer is a good template for the growth of the highly (222)-textured In2O3 films on the sapphire substrate. The surface of the Zr-In2O3 film becomes rougher as the film thickness increases, perhaps because of the formation of larger mounds on the film surface as the thickness of Zr-In2O3 increases. The carrier concentration increased markedly from 5.8 × 1020 to 1.83 × 1021 cm− 3 with film thickness from 95 to 220 nm, because more growth-induced defects are formed in the thick Zr-In2O3 film. The large increase in the number of charge carriers and the improvement in the crystalline quality in the film reduce the resistivity of the thicker Zr-In2O3 film.  相似文献   

2.
A.F. Qasrawi 《Thin solid films》2011,519(11):3768-3772
Polycrystalline AgIn5S8 thin films are obtained by the thermal evaporation of AgIn5S8 crystals onto ultrasonically cleaned glass substrates under a pressure of ~ 1.3 × 10−3 Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of −3.56 × 10−4 eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn5S8 films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange.  相似文献   

3.
Thin films of a-Se80Te20−xCux (where x=2, 6, 8 and 10) were deposited on glass substrates by vacuum evaporation technique. The absorbance, reflectance and transmittance of as-deposited thin films were measured in the wavelength region 400-1000 nm. The optical band gap and optical constants of amorphous thin films have been studied as a function of photon energy. The optical band gap increases on incorporation of copper in Se80Te20−xCux system. The value of refractive index (n) decreases while the value of the extinction coefficient (k) increases with increasing photon energy. The results are interpreted in terms of concentration of localized states.  相似文献   

4.
5.
Sn0.2Bi1.8Te3 thin films were grown using the thermal evaporation technique on a (001) face of NaCl crystal as a substrate at room temperature. The optical absorption was measured in the wave number range 500–4000 cm−1. From the optical absorption data the band gap was evaluated and studied as a function of film thickness and deposition temperature. The data indicate absorption through direct interband transition with a band gap of around 0.216 eV. The detailed results are reported here.  相似文献   

6.
A novel deposition process for depositing nano-crystalline silicon (nc-Si) thin films at low temperature was developed using reactive particle beam assisted chemical vapor deposition (RPB-CVD) for applications to the thin film transistor (TFT) backplane of flexible active matrix-OLEDs with plastic substrates. During the formation of nc-Si thin films by the RPB-CVD process with a silicon reflector electrode at low temperatures or room temperature, energetic particles could induce the formation of a crystalline phase in polymorphous Si thin films without additional substrate heating. The effects of the incident RPB energy controlled by the reflector bias were confirmed by Raman spectroscopy. The dark conductivity of polymorphous Si thin films increased with increasing reflector bias, whereas the ratio of photo and dark conductivity decreased monotonically. The optical band gap of the Si thin films also could be changed from amorphous to nano-crystalline by controlling the reflector bias. The first results of a primitive nc-Si TFT by RPB-CVD at room temperature demonstrate the technical potential of RPB-based processes as flexible TFT backplanes.  相似文献   

7.
Polycarbonate samples were implanted with 100 keV N+ ions at fluences 1015, 1016 and 5 × 1016 ions cm−2. Drastic alterations in UV-Visible transmittance spectra were observed which are interrelated with change in surface color and optical absorption of the implanted samples. UV-Visible transmission studies show that at ion fluence of 1016 ions cm−2, transmission approaches to zero at about λ = 427 nm and below up to 200 nm. Optical band gap (EOPT) reduces with increase in fluence and at maximum ion fluence of 5 × 1016 N+ cm−2, EOPT was determined to be 1.56 eV whereas for pristine its value was 3.00 eV. Raman analysis indicates the formation of amorphous carbon on the surface of polycarbonate at an ion fluence of 1016 N+ cm−2. Rise in fluence to 5 × 1016 N+ cm−2 results in enhancement in disorder on the surface of the host polymer. Modifications in the structural arrangements were found to be in strong association with changes in optical properties with increase in ion fluence and the same is discussed.  相似文献   

8.
9.
Polycrystalline cupric oxide (CuO) thin films are deposited using an alkaline solution bath employing cathodic electrodeposition method. Thin films are electroplated at various bath temperatures onto conducting indium tin oxide coated glass substrates. The bath temperature effects on the structural, optical and morphological properties of copper oxide films are studied and reported. X-ray diffraction studies revealed mixed phases of monoclinic and cubic for films grown at lower bath temperatures and that the deposited films at temperatures optimized as 75 °C exhibited cubic structure with preferential orientation along a (111) plane. Texture coefficient (Tc) values are calculated for all diffraction lines and the films were highly textured (Tc > 1). The surface morphology and surface roughness are estimated using scanning electron microscopy and atomic force microscopy, respectively and a morphology made up of pyramid shaped grains is presented. Energy dispersive analysis by X-rays revealed that the near stoichiometric CuO thin films are obtained at optimized preparative parameters. The refractive index is calculated using the envelop method. Also, the optical constants of CuO thin films such as complex dielectric constant (ε) and extinction coefficient (k) are also evaluated and reported.  相似文献   

10.
In this article, we report a method for effective immobilization of Au nanoparticles (AuNPs) on thiolated single-stranded DNA (thiol-ssDNA) modified Au electrode (AuE) surface via coordination interactions between the nitrogen atoms of DNA bases and AuNPs. It suggests that the resultant AuNP-immobilized AuE exhibits notable catalytic performance for hydrazine oxidation and the loading of AuNPs on the AuE surface and hence the effective catalytic area can be tuned by the immobilization time of thiol-ssDNA and adsorption time of AuNPs. This hydrazine sensor has a fast amperometric response time of less than 4 s. The linear range and detection limit are estimated to be from 0.1 mM to 100 mM (r = 0.998) and 0.56 μM at a signal-to-noise ratio of 3, respectively.  相似文献   

11.
Wide band gap materials such as SiC, AlN, GaN, ZnO, and diamond have excellent properties such as high operation temperature when used as field effect devices and a high resonating frequency of the substrate materials used in piezoelectric resonator devices. Integration of FET and resonating sensors on the same chip enables powerful miniaturized devices, which can deliver increased information about a gas mixture or complex liquid. Examples of sensor devices based on different wide band gap materials will be given.  相似文献   

12.
Hot-wire CVD amorphous Si materials for solar cell application   总被引:1,自引:0,他引:1  
Qi Wang 《Thin solid films》2009,517(12):3570-15374
Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed.  相似文献   

13.
We present double layer structures consisting of ZnO:B/ZnO:B (BZO) and In2O3:Mo (IMO)/BZO films. The structure offers the unique opportunity of separating the conductivity of transparent conductive oxides from their light scattering behavior and allows their optimization for use in thin film solar cells. The layers serve as carrier transport and light trapping layers, respectively. BZO films were prepared by mid-frequency magnetic sputtering from a ZnO:B2O3 ceramic target. In order to enhance the conductivity of the BZO films, hydrogen was introduced into the sputtering atmosphere. Introducing hydrogen increased the mobility of the BZO-based double layer films to near 30 cm2/V•s. Efficient scattering was achieved by etching the film in dilute hydrochloric acid. IMO films were also tested as the transport layer. An unconventional surface morphology was obtained by etching the IMO/BZO double layer film. Using this cascading multilayer structure IMO/BZO film as the front contact in a-Si:H solar cell, 20.4% and 7.4% enhancements in short circuit current density were obtained compared to smooth IMO films and textured single layer BZO films.  相似文献   

14.
The electronic band structure, total and angular momentum resolved projected density of states for NaSr3Be3B3O9F4 are calculated using the all-electron full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) method. The calculations are performed within four exchange correlations namely; local density approximation (LDA), general gradient approximation (PBE-GGA), Engel–Vosko generalized gradient approximation (EVGGA) and the recently modified Becke–Johnson potential (mBJ). Calculations suggest that NaSr3Be3B3O9F4 is a direct wide band gap semiconductor. The exchange correlations potentials exhibit significant influence on the value of the energy gap being about 4.82 eV (LDA), 5.16 eV (GGA), 6.20 (EVGGA) and 7.20 eV (mBJ). The mBJ approach succeed by large amount in bringing the calculated energy gap closer to the experimental one (7.28 eV). The angular momentum resolved projected density of states shows the existence of a strong hybridization between the various orbitals. In additional we have calculated the electronic charge density distribution in two crystallographic planes namely (1 0 1) and (0 0 −1) to visualized the chemical bonding characters.  相似文献   

15.
采用射频磁控溅射工艺,以Al掺杂ZnO(ZAO)陶瓷靶为靶材在石英玻璃基片上制备出具有优良光电性能的ZAO透明导电薄膜,研究了溅射功率对薄膜光电性能的影响。在不同溅射功率条件下制备的ZAO薄膜具有很好的c轴择优取向。较大功率溅射有利于薄膜晶粒尺寸的增大、电阻率降低。ZAO薄膜在可见光区的透过率平均值高达90%以上,受溅射功率影响不大。在340nm-420nm波长附近ZAO薄膜透过率急剧下降,呈现明显的紫外吸收边;高的溅射功率提高了ZAO薄膜的光学带隙宽度。  相似文献   

16.
We report in this work the epitaxial growth and the electrical characteristics of single crystalline Pb(Zr0.52Ti0.48)O3 (PZT) thin film on SrTiO3(STO)-buffered Si(001) substrate. The STO buffer layer deposited by molecular beam epitaxy allows a coherent oxide/Si interface leading enhanced PZT crystalline quality. 70 nm-thick PZT (52:48) layer was then grown on STO/Si(001) by sol-gel method. X-ray diffraction demonstrates the single crystalline PZT film on Si substrate in the following epitaxial relationship: [110] PZT (001)//[110] STO (001)//[100] Si (001). The macroscopic electrical measurements show a hysteresis loop with memory window of 2.5 V at ± 7 V sweeping range and current density less than 1 μA/cm2 at 750 kV/cm. The artificial domains created by piezoresponse force microscopy with high contrast and non-volatile properties provide further evidence for the excellent piezoelectric properties of the single crystalline PZT thin film.  相似文献   

17.
Poly-(2,5-Thienylene Vinylene) (PTV) derivatives have been synthesised via the “dithiocarbamate precursor route” in good yield and satisfactory molecular weight. Structural characterisations of the conjugated PTV polymers reveal an optical band gap around 1.8 eV. Organic field effect transistors and organic based photovoltaic devices were made with the plain PTV, via a precursor approach. More specifically, solar cells were produced using a blend of the precursor PTV polymer and PCBM (1-(3-methoxycarbonyl) propyl-1-phenyl [6,6] C61) at various ratios, converted in situ in thin film. A promising power efficiency of 0.76% was achieved.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号