共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, it is proposed to use a new type of solid particle impact test (slurry jet) to swiftly evaluate wear properties of thin, single layered or multilayered coatings. By the slurry jet, 1.2 μm alumina particles were impacted at high velocity perpendicular to thin PVD coatings of TiN deposited on high speed steel substrate materials under various substrate temperatures. Since the coatings have a much higher wear resistance than the substrate material, the wear rate increases significantly to the higher level of the HSS material when the coatings are penetrated. This is utilized in the quantification of the assessment of coating wear. A ranking of wear resistance and correlations to the coating surface hardness measured by nano-indentation tests, and coating morphology and structures are given and discussed. The TiN deposited under the highest substrate temperature proved to have the highest wear resistance although it had a relatively low hardness. The wear rate of the TiN coatings varies with the orientation of grains, that is, the {1 1 1} orientation that dominates for the high temperature deposition shows a higher wear resistance than the {1 0 0} orientation, which corresponds with the cleavage fracture behavior. Thus, it can be recommended as a screening test when evaluating coatings and coated materials. 相似文献
2.
TiN、CrN的环境摩擦磨损对比研究 总被引:1,自引:0,他引:1
采用直流叠加脉冲偏压电弧离子镀技术在45钢表面沉积了TiN、CrN薄膜。用显微硬度计测试了薄膜的硬度,用划痕仪测量了薄膜的膜基结合力,用球-盘式摩擦磨损试验机评价了不同介质条件下(干摩擦、水润滑、油润滑)TiN、CrN薄膜的摩擦学特性,用表面轮廓仪测试了薄膜磨痕处的磨损轮廓,用扫描电镜(SEM)观察了薄膜磨痕形貌。结果表明,相对于干摩擦条件下,在水润滑和油润滑条件下TiN和CrN薄膜的摩擦因数和磨痕深度都有所降低。在相同的介质条件下,CrN薄膜的摩擦因数和磨痕深度始终小于TiN薄膜。 相似文献
3.
A.
ztürk K.V. Ezirmik K. Kazmanl M. Ürgen O.L. Erylmaz A. Erdemir 《Tribology International》2008,41(1):49-59
The purpose of this study is to investigate comparative tribological behaviors of Cu-doped TiN, CrN, and MoN coatings under a wide range of dry sliding conditions. TiN and CrN coatings have been developed and used by industry in numerous tribological applications including, machining, manufacturing and transportation. In contrast, MoN has attracted very little attention as a tribological coating in the past, despite being much harder than both TiN and CrN. In this paper, we will mainly concentrate on the Cu-doped versions of these coatings whose tribological properties have not yet been fully explored. The results of this study have confirmed that the addition of Cu into TiN, CrN and MoN coatings has indeed modified the grain size and morphology, but had a beneficial effect only on the friction and wear behavior of MoN. The tribological behavior of CrN did not change much with the addition of Cu but that of TiN became worse after Cu additions. Raman spectroscopy technique was used to elucidate the structural and chemical natures of the oxide films forming on sliding surfaces of Cu-doped TiN, CrN and MoN films. The differences in the friction and wear behavior of Cu-doped TiN, CrN, and MoN is fully considered and a mechanistic explanation has been provided using the principles of a crystal chemical model that can relate the lubricity of complex oxides to their ionic potentials. 相似文献
4.
Dry sliding wear resistance of nanomultilayered TiN/CrN coatings has been evaluated using a ball-on-disk tribometer and compared with TiN and CrN monolayered references. The significant extend of lifetime of the nanostratified coatings is explained by a particular stress field generated in the whole thickness and a degradation model is proposed. 相似文献
5.
At present, one of the most important problems in automobile engines and transmission components is due to tribological processes (friction and wear) that in many cases come accompanied by corrosion processes due to the environmental conditions to which these materials are exposed during their lifetime. Both mechanisms can be minimized by means of the development and the application of adequate coatings that combine low friction with a high corrosion and wear resistance.The new tendencies in industrial PVD coatings to improve their properties are focused in the development of new multilayer and nanostructured coatings. These structures allow in a relatively simple way enhancing their tribological properties and the corrosion resistance that can not be reached by means of the traditional monolayer coatings. The background of this type of coatings consists of the stacking up of several layers with good individual tribological and mechanical properties, but every individual layer has a thickness that can be from hundreds of nanometres down to only 5-10 nm. The properties of these nanostructured coatings depend strongly on the thickness modulation of every individual layer.Concerning PVD coatings, the chrome nitride coatings have demonstrated to possess excellent wear resistance properties. In this work, multilayer Cr/CrN coatings with different individual layer thickness have been deposited on substrates of steel F1272 and silicon. The deposition has been carried out by means of the cathodic arc method alternating an atmosphere of pure Ar with a reactive mixture of N2/Ar. The multilayers obtained have been analyzed by means of Glow Discharge Optical Emission Spectroscopy (GD-OES) and in some cases by means of FE-SEM obtaining bilayer (Cr/CrN) periods of the order of 220 and 45 nm. The coating characterization has been complemented with hardness and composition measurements as well as by the performance of several wear and corrosion-wear tests. 相似文献
6.
7.
Patterned PVD TiN spot coatings on M2 steel: Tribological behaviors under different sliding speeds 总被引:1,自引:0,他引:1
Experiments were performed to investigate systematically the influence of sliding speeds on tribological behaviours of in-lined (IN), staggered (ST) spot-islandic and fully coated (FC) physical vapour deposition (PVD) TiN coatings on M2 steel discs sliding with ASSAB 17 tool steel pins. Results revealed that: (i) the friction coefficients of the individual mating couples generally decreased with the sliding speed and the order in increasing magnitude at each specific sliding speed was FC, IN, and ST pair, respectively and (ii) the wear loss was inversely related to the sliding speed, and the wear loss of both the pin and disc of FC mating pair was the largest with ST the second and IN the third. Relevant mechanisms for the friction and the wear loss are proposed and discussed in this paper. 相似文献
8.
CrN/CrAlN and Cr/CrN/CrAlN multilayers were grown with dual RF magnetron sputtering. The application of these multilayers will be wood machining of green wood. That is why ball-on-disc and electrochemical tests in NaCl aqueous solution were realized to elucidate the tribological and corrosion behavior of these coatings as they will be exposed to wear and corrosion during wood machining process. The samples/alumina and samples/WC coupling showed different wear mechanisms. The 300 nm thick Cr/CrN/CrAlN multilayer demonstrated the best tribological behavior and corrosion resistance. The influence of growth defects on corrosion resistance has been shown. 相似文献
9.
Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil 总被引:2,自引:0,他引:2
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions. 相似文献
10.
A method is presented which enables a micro-scale abrasion test to be used to measure the wear performance of a coating over a small region, typically of millimetre dimensions, on a curved surface. The method is also applicable to studies of the wear resistance of any bulk material with a surface having complex curvature. The technique is illustrated by measurement of the intrinsic abrasion resistance of thin PVD coatings of TiZrN, ZrNbN and TiNbN on both flat and cylindrical tool steel and flat stainless steel substrates. The ability to measure the wear resistance of both a coating and its substrate, independently of each other and by a single test, is confirmed by experiment. 相似文献
11.
Soft steel and aluminium substrates with load-carrying layers of electroplated nickel were coated with commercially available low friction vapour deposited coatings. The mechanical and tribological properties of the coating and substrate composites were evaluated with special emphasis on the influence of the nickel layer. Two different thicknesses of the intermediate load-carrying nickel layer were tested. The samples were evaluated regarding friction and sliding wear, abrasive wear, hardness and elastic modulus, morphology and coating thickness and adhesion between substrate and coating. It was found that all the evaluated low friction coatings were possible to be successfully deposited on the intermediate nickel layer. A relatively thick intermediate nickel layer is a promising candidate for improvement of the load-carrying capacity. 相似文献
12.
A physical vapour deposited TiC/Ti(C,N)/TiN multilayer was investigated and compared with a PVD TiN monolayer coating in a ball-on-disc test. Wear and friction against a corundum ball were measured as a function of time and sliding velocity. In these experiments, the coefficient of friction remained constant at 0.2 as long as the ball was sliding on TiC or intermidiate Ti(C,N) layers. When the TiN layer was reached, the coefficient of friction became unstable and rose to an average value of 1–1.5, which is characteristic for a TiN/Al2O3 contact. Wear rates for the multilayer were found to be three to four times smaller as compared to the reference TiN. The multilayer morphology of the TiC/Ti(C,N)/TiN was revealed in a low-angle cross-section resulting from a prolonged ball-on-disc test. In that way, it was shown that the multilayer consisted of nine separate sublayers. 相似文献
13.
Ti–TiN and TiN–CrN nanomultilayers were thermally stable retaining uniform and sharp layer interfaces up to 24 h at 773 K, without any oxidation or phase transformation accompanying each individual layer. Decreasing the multilayer spacing resulted in an increase in the hardness in both cases. The coating hardness was found to be independent of the substrate type, when applied on HS718, Ti64 and HCHCr substrates. In scratch testing, the multilayers displayed a better resistance to the onset of failure, as compared to the monolayer TiN. The substrate plasticity played an important role in determining the coating failure mode. Self-mated wear tests revealed the CrN–TiN system to exhibit the best wear behaviour, both at room temperature and at 773 K. The Ti–TiN coatings are more accommodative with all three substrates, as compared to TiN–CrN and TiN. 相似文献
14.
Multilayer Cr/CrN/Cr/Cr(N,C) and Cr/CrN with 8 and 32 layer coatings were deposited on austenite substrates using pulsed laser deposition (PLD) technique. The microstructure observations were performed using Philips CM20?, TECNAI G2 F20 – TWIN? and JEOL EX4000? transmission microscopes. The performed experiments indicated that lowering the argon flow from 60 to 30 cm3/s during chromium ablation changes buffer layers microstructure from nearly amorphous to nano‐crystalline. The nitride or carbo‐nitride layers turned out to be less sensitive to changes in nitrogen flow during deposition. The columnar microstructure of Cr layers is coarser than those in CrN ones under the same deposition condition. This observation proved also that relying on PLD technique as thin as 30 nm layers might be formed within multilayer Cr/CrN coatings. 相似文献
15.
The tribological properties of various PVD‐deposited coatings (vacuum arc method) have been tested, both single‐layer coatings (TiN, CrN, Ti(C,N), and Cr(C,N)) and multilayer coatings (Cr(C,N)/CrN/Cr and CR(C,N)/(CrN+Cr2N)/CrN/Cr). An unlubricated ball‐on‐disc tribosystem was used in which an Al2O3 ball is pressed against a coated steel disc rotating in the horizontal plane. A novelty of the method is the removal of wear debris from the contact zone using a draught of dry argon. This improves the repeatability of the test results and the stability of the tribological characteristics. It is shown that CrN coatings exhibit the best antiwear properties and Ti(C,N) the worst. Multilayer coatings have better antiwear properties than single‐layer ones. The friction coefficients for CrN and Cr(C,N) coatings are much smaller than for the commonly used TiN. A correlation has also been found between the physical properties of the coatings tested (adhesion of the coating to the substrate assessed in scratch tests, and coating hardness) and their antiwear properties. An improvement in coating‐substrate adhesion results in wear reduction, while greater hardness (causing a coating embrittlement increase and a change in the wear mechanism) brings about greater wear. There is no correlation between the physical properties and the friction coefficients of the coatings tested. 相似文献
16.
Electrical discharge machining (EDM) is a non-traditional machining method extensively used to manufacture complex geometries of hard and brittle materials such as WC–Co cemented carbides (CC). Although the thermal action of the EDM process is known to yield a relatively poor surface integrity in these materials, it may be minimized through the implementation of multi-step sequential EDM and post-EDM surface treatments. Particularly, hard coating application has been demonstrated to be effective for decreasing the EDM-induced mechanical degradation. However, additional studies are required on such coating–EDMed substrate systems to determine other crucial properties in terms of applications, e.g. adhesion and micro-scale wear behaviour. In this work the adhesion strength and the microabrasive wear resistance of TiN deposited on EDMed substrates have been evaluated by means of scratch and crater grinder testing, respectively. The results indicate that both critical load for decohesion of the coating from the substrate and coating specific wear rate increase with finer-executed EDM, reaching values close to those measured for a TiN coating deposited on a ground and polished substrate. 相似文献
17.
CrN、CrSiN薄膜在不同介质下的摩擦学性能对比研究 总被引:1,自引:0,他引:1
采用中频非平衡反应磁控溅射法在单晶硅〖BF〗P(111)〖BFQ〗和不锈钢(304SS)基材上制备CrN和CrSiN薄膜;利用球-盘式摩擦磨损试验机(CSM)考察2种薄膜在不同介质(空气、去离子水、质量分数35%NaCl 溶液)中和WC/Co球对摩的摩擦学性能。结果表明:大气环境下,CrN与CrSiN薄膜的磨损机制主要是磨粒磨损;水润滑下,CrN薄膜主要因机械抛光作用,CrSiN薄膜主要因摩擦化学反应,使得摩擦因数减小;在35%NaCl 溶液中CrN薄膜易被腐蚀,由于NaCl颗粒析出以及涂层接触区域的腐蚀和磨损产物,作为第三体的润滑作用,导致摩擦磨损发生明显变化,而CrSiN薄膜不易被腐蚀,主要因摩擦化学反应,使得摩擦磨损性能发生显著变化。 相似文献
18.
离子镀TiCN和TiN工具涂层的微结构与切削性能 总被引:4,自引:0,他引:4
采用电弧离子镀技术在硬质合金铣刀和钻头上镀覆了TiCN和TiN涂层,研究并比较了两种涂层的微结构与力学性能,以及涂层铣刀的高速切削性能和涂层钻头的切削性能。结果表明,TiCN和TiN涂层同为单相的Na-Cl型结构,并都呈现(111)择优取向的柱状晶,TiCN涂层的硬度为34.6GPa,远高于TiN涂层25.1GPa的硬度。在高速铣削条件下,TiCN涂层铣刀的后刀面磨损速率仅为TiN涂层铣刀的约三分之一。TiCN涂层钻头在钻孔数为TiN涂层钻头两倍时的磨损量仍低于TiN涂层钻头。TiCN涂层的高硬度及在较高切削线速度下的减摩作用是这种涂层刀具寿命提高的重要原因。 相似文献
19.
Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) have been used in gas turbine engines for a number of years. The primary mode of failure is attributed to oxidation of the bond coat and growth of the thermally grown oxide (TGO), the alumina scale that forms on the bond coat and to which the ceramic top coat adheres. Once the TGO reaches a critical thickness, the TBC tends to spall and expose the underlying substrate to the hot gases. Erosion is commonly accepted as a secondary failure mechanism, which thins the TBC thus reducing its insulation capability and increasing the TGO growth rate. In severe conditions, erosion can completely remove the TBC over time, again resulting in the exposure of the substrate, typically Ni-based superalloys. Since engine efficiency is related to turbine entry temperature (TET), there is a constant driving force to increase this temperature. With this drive for higher TETs comes corrosion problems for the yttria stabilised zirconia (YSZ) ceramic topcoat. YSZ is susceptible to attack from molten calcium–magnesium–alumina–silicates (CMAS) which degrades the YSZ both chemically and micro-structurally. CMAS has a melting point of around 1240 °C and since it is common in atmospheric dust it is easily deposited onto gas turbine blades. If the CMAS then melts and penetrates into the ceramic, the life of the TBC can be significantly reduced. This paper discusses the various failure mechanisms associated with the erosion, corrosion and erosion–corrosion of EB PVD TBCs. The concept of a dimensionless ratio D/d, where D is the contact footprint diameter and d is the column diameter, as a means of determining the erosion mechanism is introduced and discussed for EB PVD TBCs. 相似文献
20.
Composite materials produced by powder metallurgy provide solutions to many engineering applications that require materials with high abrasive wear resistance. The actual wear behaviour of a material is associated with many external factors (abrasive particle size, velocity and angularity) and intrinsic material properties of wear (hardness, toughness, Young modulus, etc.). Hardness and toughness properties of wear resistant materials are highly dependent on the content of the reinforcing phase, its size and on the mechanical properties of the constituent phase. This study is focused on the analysis of the (AEW) abrasive erosive wear (solid particle erosion) using different wear devices and abrasives. Powder materials (steels, cermets and hardmetals) were studied. Wear resistance of materials and wear mechanisms were studied and compared with those of commercial steels. Based on the results of wear studies, surface degradation mechanisms are proposed. The following parameters characterizing the materials were found necessary in materials creation and selection: hardness (preferably in scale comparable with impact), type of structure (preferably hardmetal type) and wear parameters characterizing material removal at plastic deformation. 相似文献