首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To meet both flexibility and performance requirements, particularly when implementing high-end real-time image/video processing algorithms, the paper proposes to combine the application specific instruction-set processor (ASIP) paradigm with the reconfigurable hardware one. As case studies, the design of partially reconfigurable ASIP (r-ASIP) architectures is presented for two classes of algorithms with widespread diffusion in image/video processing: motion estimation and retinex filtering. Design optimizations are addressed at both algorithmic and architectural levels. Special processor concepts used to trade-off performance versus flexibility and to enable new features of post-fabrication configurability are shown. Silicon implementation results are compared to known ASIC, DSP or reconfigurable designs; the proposed r-ASIPs stand for their better performance–flexibility figures in the respective algorithmic class.
Luca FanucciEmail:

Sergio Saponara   got the Laurea degree, cum laude, and the Ph.D. in Electronic Engineering from the University of Pisa in 1999 and 2003, respectively. In 2002, he was with IMEC, Leuven (B), as Marie Curie Research Fellow. Since 2001, he collaborates with Consorzio Pisa Ricerche-TEAM in Pisa. He is senior researcher at the University of Pisa in the field of VLSI circuits and systems for telecom, multimedia, space and automotive applications. He is co-author of more than 80 scientific publications. He holds the chair of electronic systems for automotive and automation at the Faculty of Engineering. Michele Casula   received the Laurea degree in Electronic Engineering from the University of Pisa in 2005. Since 2006, he is pursuing a Ph.D. degree in Information Engineering at the same university. His current interests involve VLSI circuits design, computer graphics, and Network-on-Chips. Luca Fanucci    received the Laurea degree and the Ph.D. degree in Electronic Engineering from the University of Pisa in 1992 and 1996, respectively. From 1992 to 1996, he was with ESA/ESTEC, Noordwijk (NL), as a research fellow. From 1996 to 2004, he was a senior researcher of the Italian National Research Council in Pisa. He is Professor of Microelectronics at the University of Pisa. His research interests include design methodologies and hardware/software architectures for integrated circuits and systems. Prof. Fanucci has co-authored more than 100 scientific publications and he holds more than ten patents.  相似文献   

2.
Eigendecomposition-based techniques are popular for a number of computer vision problems, e.g., object and pose estimation, because they are purely appearance based and they require few on-line computations. Unfortunately, they also typically require an unobstructed view of the object whose pose is being detected. The presence of occlusion and background clutter precludes the use of the normalizations that are typically applied and significantly alters the appearance of the object under detection. This work presents an algorithm that is based on applying eigendecomposition to a quadtree representation of the image dataset used to describe the appearance of an object. This allows decisions concerning the pose of an object to be based on only those portions of the image in which the algorithm has determined that the object is not occluded. The accuracy and computational efficiency of the proposed approach is evaluated on 16 different objects with up to 50% of the object being occluded and on images of ships in a dockyard.
Anthony A. MaciejewskiEmail:

Chu-Yin Chang   received the B.S. degree in mechanical engineering from National Central University, Chung-Li, Taiwan, ROC, in 1988, the M.S. degree in electrical engineering from the University of California, Davis, in 1993, and the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, in 1999. From 1999--2002, he was a Machine Vision Systems Engineer with Semiconductor Technologies and Instruments, Inc., Plano, TX. He is currently the Vice President of Energid Technologies, Cambridge, MA, USA. His research interests include computer vision, computer graphics, and robotics. Anthony A. Maciejewski   received the BSEE, M.S., and Ph.D. degrees from Ohio State University in 1982, 1984, and 1987. From 1988 to 2001, he was a professor of Electrical and Computer Engineering at Purdue University, West Lafayette. He is currently the Department Head of Electrical and Computer Engineering at Colorado State University. He is a Fellow of the IEEE. A complete vita is available at: Venkataramanan Balakrishnan   is Professor and Associate Head of Electrical and Computer Engineering at Purdue University, West Lafayette, Indiana. He received the B.Tech degree in electronics and communication and the President of India Gold Medal from the Indian Institute of Technology, Madras, in 1985. He then attended Stanford University, where he received the M.S. degree in statistics and the Ph.D. degree in electrical engineering in 1992. He joined Purdue University in 1994 after post-doctoral research at Stanford, CalTech and the University of Maryland. His primary research interests are in convex optimization and large-scale numerical algebra, applied to engineering problems. Rodney G. Roberts   received B.S. degrees in Electrical Engineering and Mathematics from Rose-Hulman Institute of Technology in 1987 and an MSEE and Ph.D. in Electrical Engineering from Purdue University in 1988 and 1992, respectively. From 1992 until 1994, he was a National Research Council Fellow at Wright Patterson Air Force Base in Dayton, Ohio. Since 1994 he has been at the Florida A&M University---Florida State University College of Engineering where he is currently a Professor of Electrical and Computer Engineering. His research interests are in the areas of robotics and image processing. Kishor Saitwal   received the Bachelor of Engineering (B.E.) degree in Instrumentation and Controls from Vishwakarma Institute of Technology, Pune, India, in 1998. He was ranked Third in the Pune University and was recipient of National Talent Search scholarship. He received the M.S. and Ph.D. degrees from the Electrical and Computer Engineering department, Colorado State University, Fort Collins, in 2001 and 2006, respectively. He is currently with Behavioral Recognition Systems, Inc. performing research in computer aided video surveillance systems. His research interests include image/video processing, computer vision, and robotics.   相似文献   

3.
Compression and encryption technologies are important to the efficient solving of network bandwidth and security issues. A novel scheme, called the Image Compression Encryption Scheme (ICES), is presented. It combines the Haar Discrete Wavelet Transform (DWT), Significance-Linked Connected Component Analysis (SLCCA), and the Advance Encryption Standard (AES). Because of above reason the ICES efficiently reduce the overall processing time. This study develops a novel hardware system to compress and encrypt an image in real-time using an image compression encryption scheme. The proposed system exploits parallel processing to increase the throughout of the cryptosystem for Internet multimedia applications to implement the ICES. Using hardware acceleration for encryption and decryption, the FPGA implementation of DWT, SLCCA and the AES algorithm can be used. Using a pipeline structure, a very high data throughput of 330 Mbit/s at a clock frequency of 40 MHz was obtained. Therefore, the ICES is secure, fast and suited to high speed network protocols such as ATM (Asynchronous Transfer Mode), FDDI (Fiber Distributed Data Interface) or Internet multimedia applications. Shih-Ching Ou is working with the Department of Electrical Engineering, National Central University as a senior professor. His research interests include computer aided design, e-learning system, and virtual reality, etc. In August 2004, he serves as Leader University Professor and Director of Research and Development, now he act as Leader University Professor and Institute of Applied Information (Chairman). He has published a number of international journal and conferences papers related to these areas. Currently, he is the chief of Bioinformatics & CAD Laboratory. Hung-Yuan Chung joined the Department of Electrical Engineering at the National Central University, Chung-li, Taiwan as an associate professor in August 1987. Since August 1992, he was promoted as professor. In addition, he is a registered professional Engineer in R. O. C. He is a life member of the CIEE and the CIE. He received the outstanding Electrical Engineer award of the Chinese Institute of Electrical Engineering in October 2003. His research and teaching interests include System Theory and Control, Adaptive Control, Fuzzy Control, Neural Network Applications, and Microcomputer-Based Control Applications. Wen-Tsai Sung is a PhD candidate at Department of Electrical Engineering, National Central University in Taiwan. His research interests include computer aided design, web-based learning system, bioinformatics and virtual reality. He has published a number of international journal and conferences papers related to these areas. He received a BS degree from the Department of Industrial Education, National Taiwan Normal University, Taiwan in 1993 and received a MS degree from the Department of Electrical Engineering, National Central University, Taiwan in 2000. He has win the dragon thesis award; master degree thesis be recognized the most outstanding academic research. The thesis entitle is: “Integrated computer graphics system in a virtual environment.” Sponsor is Acer Foundation (Acer Universal Computer Co.). Currently, he is studying PhD at the Department of Electrical Engineering, National Central University as a researcher of Bioinformatics & CAD Laboratory.  相似文献   

4.
Orientation update message filtering is an important issue in collaborative virtual environments (CVEs). Dead-reckoning (DR) is a known effective mechanism for update message filtering. Yet, previous deadreckoning techniques mainly focus on the update message filtering for positions. The existing orientation deadreckoning algorithms are based on fixed threshold values. The drawbacks of fixed thresholding for orientations (FTO) are discussed in this paper. We propose a variable thresholding for orientations (VTO) based on average recent angular velocity. The main advantage of the proposed VTO is the ability of balancing the number of state update messages and shift frequency of direction and speed of rotation.  相似文献   

5.
6.
7.
Advanced collaboration environments are extensively utilized for distance learning, e-science, and other distributed global collaboration events. In such environments, high-quality and seamless media services play an important role in improving the quality of user experience to participants. In this paper, to support high-quality media-based services, we design open media service architecture for advanced collaboration environments, by combining the open interface for state-of-the-art media tools, the performance monitoring tools for devices and networks, and application-level adaptation schemes for media streaming. By implementing the proposed architecture on top of an open-source Access Grid (AG) collaboration toolkit, we verify that high-quality collaboration among several collaboration sites can be effectively realized over a multicast-enabled network testbed with improved media quality experience.
JongWon Kim (Corresponding author)Email:

Sang Woo Han   received the B.S. degree in computer science from Chung-Ang University, Seoul, Korea and the M.S. degree from the Department of Information and Communications at Gwangju Institute of Science and Technology (GIST), Gwangju, Korea in 2003 and 2005, respectively. He is pursuing a Ph.D. degree in the School of Information and Mechatronics at GIST. His research interests include advanced collaboration environment with a current focus on multimedia QoS provision and multi-agent negotiation. Ju-Won Park   received his B.S. degree in information and telecommunication engineering from Hankuk Aviation University in 2002 and his M.S. degree in Information and Communications at Gwangju Institute of Science and Technology (GIST) in 2004. He is pursuing a Ph.D. degree in the School of Information and Mechatronics at GIST. His main research activities concern end-to-end monitoring for multi-party real-time media delivery. JongWon Kim   received the B.S., M.S. and Ph.D. degrees from Seoul National University, Seoul, Korea, in 1987, 1989 and 1994, respectively, all in control and instrumentation engineering. In 1994-1999, he was with the Department of Electronics Engineering at the KongJu National University, KongJu, Korea, as an Assistant Professor. From 1997 to 2001, he was visiting the Signal and Image Processing Institute (SIPI) of Electrical Engineering - Systems Department at the University of Southern California, Los Angeles, CA. USA, where he has served as a Research Assistant Professor since Dec. 1998. From September 2001, he has joined as an Associate Prof. at the Department of Information & Communications, Gwangju Institute of Science and Technology (GIST, formerly known as K-JIST), Gwangju, Korea, where he is now serving as a Professor. He is focusing on networked media systems and protocols including multimedia signal processing and communications. Dr. Kim is a senior member of IEEE, a member of ACM, SPIE, KICS, IEEK, KIISE, and KIPS.   相似文献   

8.
Data mining can dig out valuable information from databases to assist a business in approaching knowledge discovery and improving business intelligence. Database stores large structured data. The amount of data increases due to the advanced database technology and extensive use of information systems. Despite the price drop of storage devices, it is still important to develop efficient techniques for database compression. This paper develops a database compression method by eliminating redundant data, which often exist in transaction database. The proposed approach uses a data mining structure to extract association rules from a database. Redundant data will then be replaced by means of compression rules. A heuristic method is designed to resolve the conflicts of the compression rules. To prove its efficiency and effectiveness, the proposed approach is compared with two other database compression methods. Chin-Feng Lee is an associate professor with the Department of Information Management at Chaoyang University of Technology, Taiwan, R.O.C. She received her M.S. and Ph.D. degrees in 1994 and 1998, respectively, from the Department of Computer Science and Information Engineering at National Chung Cheng University. Her current research interests include database design, image processing and data mining techniques. S. Wesley Changchien is a professor with the Institute of Electronic Commerce at National Chung-Hsing University, Taiwan, R.O.C. He received a BS degree in Mechanical Engineering (1989) and completed his MS (1993) and Ph.D. (1996) degrees in Industrial Engineering at State University of New York at Buffalo, USA. His current research interests include electronic commerce, internet/database marketing, knowledge management, data mining, and decision support systems. Jau-Ji Shen received his Ph.D. degree in Information Engineering and Computer Science from National Taiwan University at Taipei, Taiwan in 1988. From 1988 to 1994, he was the leader of the software group in Institute of Aeronautic, Chung-Sung Institute of Science and Technology. He is currently an associate professor of information management department in the National Chung Hsing University at Taichung. His research areas focus on the digital multimedia, database and information security. His current research areas focus on data engineering, database techniques and information security. Wei-Tse Wang received the B.A. (2001) and M.B.A (2003) degrees in Information Management at Chaoyang University of Technology, Taiwan, R.O.C. His research interests include data mining, XML, and database compression.  相似文献   

9.
10.
The simple least-significant-bit (LSB) substitution technique is the easiest way to embed secret data in the host image. To avoid image degradation of the simple LSB substitution technique, Wang et al. proposed a method using the substitution table to process image hiding. Later, Thien and Lin employed the modulus function to solve the same problem. In this paper, the proposed scheme combines the modulus function and the optimal substitution table to improve the quality of the stego-image. Experimental results show that our method can achieve better quality of the stego-image than Thien and Lin’s method does. The text was submitted by the authors in English. Chin-Shiang Chan received his BS degree in Computer Science in 1999 from the National Cheng Chi University, Taipei, Taiwan and the MS degree in Computer Science and Information Engineering in 2001 from the National Chung Cheng University, ChiaYi, Taiwan. He is currently a Ph.D. student in Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in applied mathematics in 1977 and his MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D. in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a Fellow of IEEE, a Fellow of IEE and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression. Yu-Chen Hu received his Ph.D. degree in Computer Science and Information Engineering from the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan in 1999. Dr. Hu is currently an assistant professor in the Department of Computer Science and Information Engineering, Providence University, Sha-Lu, Taiwan. He is a member of the SPIE society and a member of the IEEE society. He is also a member of the Phi Tau Phi Society of the Republic of China. His research interests include image and data compression, information hiding, and image processing.  相似文献   

11.
In this paper, we shall propose a method to hide a halftone secret image into two other camouflaged halftone images. In our method, we adjust the gray-level image pixel value to fit the pixel values of the secret image and two camouflaged images. Then, we use the halftone technique to transform the secret image into a secret halftone image. After that, we make two camouflaged halftone images at the same time out of the two camouflaged images and the secret halftone image. After overlaying the two camouflaged halftone images, the secret halftone image can be revealed by using our eyes. The experimental results included in this paper show that our method is very practicable. The text was submitted by the authors in English. Wei-Liang Tai received his BS degree in Computer Science in 2002 from Tamkang University, Tamsui, Taiwan, and his MS degree in Computer Science and Information Engineering in 2004 from National Chung Cheng University, Chiayi, Taiwan. He is currently a PhD student of Computer Science and Information Engineering at National Chung Cheng University. His research fields are image hiding, digital watermarking, and image compression. Chi-Shiang Chan received his BS degree in Computer Science in 1999 from National Cheng Chi University, Taipei, Taiwan, and his MS degree in Computer Science and Information Engineering in 2001 from National Chung Cheng University, Chiayi, Taiwan. He is currently a PhD student of Computer Science and Information Engineering at National Chung Cheng University. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in Applied Mathematics in 1977 and his MS degree in Computer and Decision Sciences in 1979, both from National Tsing Hua University, Hsinchu, Taiwan. He received his PhD in Computer Engineering in 1982 from National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a fellow of the IEEE, a fellow of the IEE, and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression.  相似文献   

12.
This paper presents novel algorithmic and architectural solutions for real-time and power-efficient enhancement of images and video sequences. A programmable class of Retinex-like filters, based on the separation of the illumination and reflectance components, is proposed. The dynamic range of the input image is controlled by applying a suitable non-linear function to the illumination, while the details are enhanced by processing the reflectance. An innovative spatially recursive rational filter is used to estimate the illumination. Moreover, to improve the visual quality results of two-branch Retinex operators when applied to videos, a novel three-branch technique is proposed which exploits both spatial and temporal filtering. Real-time implementation is obtained by designing an Application Specific Instruction-set Processor (ASIP). Optimizations are addressed at algorithmic and architectural levels. The former involves arithmetic accuracy definition and linearization of non-linear operators; the latter includes customized instruction set, dedicated memory structure, adapted pipeline, bypasses, custom address generator, and special looping structures. The ASIP is synthesized in standard-cells CMOS technology and its performances are compared to known Digital signal processor (DSP) implementations of real-time Retinex filters. As a result of the comparison, the proposed algorithmic/architectural design outperforms state-of-art Retinex-like operators achieving the best trade-off between power consumption, flexibility, and visual quality.
Giovanni RamponiEmail:

Sergio Saponara   is a Research Scientist and Assistant Professor at the University of Pisa. He was born in Bari, Italy, in 1975. He received the Electronic Engineering degree cum laude and the Ph.D. in Information Engineering, both from Pisa University, in 1999 and 2003, respectively. Since 2001 he collaborates with Consorzio Pisa Ricerche, Italy and in 2002 he was with IMEC, Belgium as Marie Curie research fellow. His research and teaching interests include electronic circuits and systems for multimedia, telecom and automation. He co-authored more than 40 papers including journals, conferences and patents. Luca Fanucci   is Associate Professor of Microelectronics at the University of Pisa. He was born in Montecatini, Italy, in 1965. He received the Doctor Engineer degree and the Ph.D. in Electronic Engineering from the University of Pisa in 1992 and 1996, respectively. From 1992 to 1996, he was with the European Space Agency's Research and Technology Center, Noordwijk, The Netherlands, and from 1996 to 2004 he was a Research Scientist of the Italian National Research Council in Pisa. His research interests include design technologies for integrated circuits and systems, with emphasis on system-level design, hardware/software co-design and low-power. He co-authored more than 100 journal/conference papers and holds more than 10 patents. Stefano Marsi   was born in Trieste, Italy, in 1963. He received the Doctor Engineer degree in Electronic Engineering (summa cum laude) in 1990 and the Ph.D. degree in 1994. Since 1995 he has held the position of researcher in the Department of Electronics at the University of Trieste where he is the teacher of courses in electronic field. His research interests include non-linear operators for image and video processing and their realization through application specific electronics circuits. He is author or co-author of more than 40 papers in international journals, proceedings of international conferences or contributions in books. Giovanni Ramponi   is Professor of Electronics at the Department of Electronics of the University of Trieste, Italy. His research interests include nonlinear digital signal processing, and the enhancement and feature extraction in images and image sequences. Prof. Ramponi has been an Associate Editor of the IEEE Signal Processing Letters and of the IEEE Transactions on Image Processing; presently is an AE of the SPIE Journal of Electronic Imaging. He has participated in various EU and National Research Projects. He is the co-inventor of various pending international patents and has published more than 140 papers in international journals and conference proceedings, and as book chapters. Prof. Ramponi contributes to several undergraduate and graduate courses on digital signal processing.   相似文献   

13.
In this paper, we present a novel framework on personalized retrieval of sports video, which includes two research tasks: semantic annotation and user preference acquisition. For semantic annotation, web-casting texts which are corresponding to sports videos are firstly captured from the webpages using data region segmentation and labeling. Incorporating the text, we detect events in the sports video and generate video event clips. These video clips are annotated by the semantics extracted from web-casting texts and indexed in a sports video database. Based on the annotation, these video clips can be retrieved from different semantic attributes according to the user preference. For user preference acquisition, we utilize click-through data as a feedback from the user. Relevance feedback is applied on text annotation and visual features to infer the intention and interested points of the user. A user preference model is learned to re-rank the initial results. Experiments are conducted on broadcast soccer and basketball videos and show an encouraging performance of the proposed method.
Hanqing LuEmail:

Yi-Fan Zhang   received the B.E. degree from Southeast University, Nanjing, China, in 2004. He is currently pursuing the Ph.D. degree at National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China. In 2007, he was an intern student in Institute for Infocomm Research, Singapore. Currently he is an intern student in China-Singapore Institute of Digital Media. His research interests include multimedia, video analysis and pattern recognition. Changsheng Xu   (M’97–SM’99) received the Ph.D. degree from Tsinghua University, Beijing, China in 1996. Currently he is Professor of Institute of Automation, Chinese Academy of Sciences and Executive Director of China-Singapore Institute of Digital Media. He was with Institute for Infocomm Research, Singapore from 1998 to 2008. He was with the National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences from 1996 to 1998. His research interests include multimedia content analysis, indexing and retrieval, digital watermarking, computer vision and pattern recognition. He published over 150 papers in those areas. Dr. Xu is an Associate Editor of ACM/Springer Multimedia Systems Journal. He served as Short Paper Co-Chair of ACM Multimedia 2008, General Co-Chair of 2008 Pacific-Rim Conference on Multimedia (PCM2008) and 2007 Asia-Pacific Workshop on Visual Information Processing (VIP2007), Program Co-Chair of VIP2006, Industry Track Chair and Area Chair of 2007 International Conference on Multimedia Modeling (MMM2007). He also served as Technical Program Committee Member of major international multimedia conferences, including ACM Multimedia Conference, International Conference on Multimedia & Expo, Pacific-Rim Conference on Multimedia, and International Conference on Multimedia Modeling. Xiaoyu Zhang   received the B.S. degree in computer science from Nanjing University of Science and Technology in 2005. He is a Ph.D. candidate of National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences. He is currently a student in China-Singapore Institute of Digital Media. His research interests include image retrieval, video analysis, and machine learning. Hanqing Lu   (M’05–SM’06) received the Ph.D. degree in Huazhong University of Sciences and Technology, Wuhan, China in 1992. Currently he is Professor of Institute of Automation, Chinese Academy of Sciences. His research interests include image similarity measure, video analysis, object recognition and tracking. He published more than 100 papers in those areas.   相似文献   

14.
15.
FRCT: fuzzy-rough classification trees   总被引:1,自引:1,他引:0  
Using fuzzy-rough hybrids, we have proposed a measure to quantify the functional dependency of decision attribute(s) on condition attribute(s) within fuzzy data. We have shown that the proposed measure of dependency degree is a generalization of the measure proposed by Pawlak for crisp data. In this paper, this new measure of dependency degree has been encapsulated into the decision tree generation mechanism to produce fuzzy-rough classification trees (FRCT); efficient, top-down, multi-class decision tree structures geared to solving classification problems from feature-based learning examples. The developed FRCT generation algorithm has been applied to 16 real-world benchmark datasets. It is experimentally compared with the five fuzzy decision tree generation algorithms reported so far, and the rough decomposition tree algorithm. Comparison has been made in terms of number of rules, average training time, and classification accuracy. Experimental results show that the proposed algorithm to generate FRCT outperforms existing fuzzy decision tree generation techniques and rough decomposition tree induction algorithm.
Rajen B. BhattEmail:

Dr. Rajen Bhatt   has obtained his B.E. and M.E. both in Control and Instrumentation, from S.S. Engineering College, Bhavnagar, and from Delhi College of Engineering, New Delhi in 1999 and 2002, respectively. He has obtained his Ph.D. from the Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA in 2006. He was actively engaged in the development of multimedia course on Control Engineering under the National Program on Technology Enabled Learning (NPTEL). He is a regular reviewer of International Journals like Pattern Recognition, Information Sciences, Pattern Analysis and Applications, and IEEE Trans. on Systems, Man and Cybernatics. Since June 2005, he is working with Imaging team of Samsung India Software Centre as a Lead Engineer. He also serves as a Member of Patent Review Committee at Samsung. He has published several research papers in reputed journals and conferences. His current research interests are Pattern Classification and Regression, Soft Computing, Data mining, Patents and Trademarks, and Information Technology for Education. He holds an expertise over industry standard software project management. Dr. M. Gopal   has obtained his B.Tech. (Electrical), M.Tech. (Control systems), and Ph.D. (Control Systems) degrees. all from Birla Institute of Technology and Science, Pilani in 1968, 1970, and 1976, respectively. He has been in the teaching and research field for the last three and half decades; associated with NIT Jaipur, BITS Pilani, IIT Bombay, City University London, and University Technology Malaysia, and IIT Delhi. Since January 1986 he is a Professor with the Electrical Engineering Department, Indian Institute of Technology Delhi. He has published six books in the area of Control Engineering, and a video course on Control Engineering including complete presentation and student questionnaires. He has also published interactive web-compatible multimedia course on Control Engineering, under National Program on Technology Enabled Learning (NPTEL). He has published several research papers in referred journals and conferences. His current research interests include Machine learning, Soft computing technologies, Intelligent control, and e-Learning.   相似文献   

16.
Real-time traffic will be a predominant traffic type in the next generation networks, and networks with 100% reliability and availability will be required by real-time premium traffic. It is believed that QoS guarantees could be better provided by connection oriented networks such as Multi Protocol Label Switching (MPLS). These connection oriented networks are more vulnerable to network failure. Conventional path protection methods perform re-routing to cope with this. However, re-routing always causes packet losses and results in service outage. These losses are bursty in nature and highly degrade the QoS of the real-time premium traffic. Thus, 100% availability cannot be achieved by conventional methods. The novel path protection proposed in this paper recovers the bursty packet losses due to re-routing by using forward error correction (FEC) path. Therefore, it can provide network architecture with no service outage for such traffic. The numerical results show that the proposed method can achieve a very high availability for real-time premium traffic in future IP/MPLS networks.
Mitsuo HayasakaEmail:

Mitsuo Hayasaka   received B.E. and M.E. degrees from the University of Electro-Communications, Tokyo, Japan in 2000 and 2002, respectively. He is currently a Ph.D. student at the University of Electro-Communications, Tokyo, Japan. His research interests involve QoS controls of real-time multimedia communications, and reliable network architecture. He is a member of IEEE, IEICE and IPSJ. Tetsuya Miki   received the B.E. degree from the University of Electro-Communications, Tokyo, Japan in 1965, the M.E. and Ph.D. degrees from Tohoku University, Sendai, Japan in 1967 and 1970, respectively. He joined the Electrical Communication Laboratories of NTT in 1970, where he engaged in the research and development of high-speed digital transmission systems using coaxial cable, fiber-optical transmission systems including the initial WDM technologies, fiber-to-the-home systems, ATM systems, network management systems, and broadband network architecture. He is currently a Professor at the University of Electro-Communications, Tokyo, Japan, and is interested in photonic networks, community networks, access networks, and dependable networks. A fellow of the IEEE and IEICE, he also served as vice-president of the IEEE Communications Society in 1998 and 1999 and as vice-president of IEICE in 2003 and 2004.  相似文献   

17.
Multicast offers an efficient means of distributing video contents/programs to multiple clients by batching their requests and then having them share a server‘s video stream.Batching customers‘ requests is either client-initiated or server-initiated.Most anvanced client-initiated video multicasts are implemented by patching.Periodic broadcast,a typical server-initiated approach,can be entirety-based or segment-based.This paper focuses on the performance of the VoD service for popular videos.First,we analyze the limitation of conventional patching when the customer request rate is high.Then,By combining the advantages of each of the two broadcast schemes,we propose a hybrid broadcast scheme for popular videos ,which not only lowers the serviec latency but also improves clients‘ interactivity by using an active buffering technique ,This is shown to be a good compromise for both lowering service latency and improving the VCR-like interactivity.  相似文献   

18.
The problem of minimizing communication in a distributed networked system is considered in a discrete-event formalism where the system is modeled as a finite-state automaton. The system consists of a central station and a set of N local agents, each observing a set of local events. The central station needs to know exactly the state of the system, whereas local agents need to disambiguate certain pre-specified pairs of states for purposes of control or diagnosis. This requirement is achieved by communication, which occurs only between the central station and the local agents but not among the local agents. A communication policy is defined as a set of event occurrences to be communicated between the central station and the local agents. A communication policy is said to be minimal if any removal of communication of event occurrences will affect the correctness of the solution. Under an assumption on the absence of cycles (other than self-loops) in the system model, this paper presents an algorithm that computes a minimal communication policy in polynomial time in all parameters of the system. These results improve upon previous algorithms for solving minimum communication problems.
Feng LinEmail:

Weilin Wang   received M.S. and Ph.D. degrees in Electrical Engineering: Systems from the University of Michigan, Ann Arbor, in 2003 and 2007, respectively. He received a M.S.E. in Industrial Engineering, also from the University of Michigan, Ann Arbor, in 2006. He is currently a postdoctoral research fellow in the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. Prior to enrolling at the University of Michigan, Ann Arbor, he worked for the Zhejiang Department of Transportation, Hangzhou, China. His research interests are in optimization algorithms, discrete event systems, networked control systems, coverage and mobility for wireless sensor networks, and energy efficient wireless networking. Stéphane Lafortune   received the B. Eng degree from Ecole Polytechnique de Montréal in 1980, the M. Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr. Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett). At the University of Michigan, he received the EECS Department Research Excellence Award in 1994–1995, the EECS Department Teaching Excellence Award in 1997–1998, and the EECS Outstanding Achievement Award in 2003–2004. Dr. Lafortune is a member of the editorial boards of the Journal of Discrete Event Dynamic Systems: Theory and Applications and of the International Journal of Control. His research interests are in discrete event systems modeling, diagnosis, control, and optimization. He is co-developer of the software packages DESUMA and UMDES. He co-authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems—Second Edition (Springer, 2007). Recent publications and software tools are available at the Web site . Feng Lin   received his B.Eng. degree in electrical engineering from Shanghai Jiao-Tong University, Shanghai, China, in 1982, and his M.A.Sc. and Ph.D. degrees in electrical engineering from the University of Toronto, Toronto, Canada, in 1984 and 1988, respectively. From 1987 to 1988, he was a postdoctoral fellow at Harvard University, Cambridge, MA. Since 1988, he has been with the Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, where he is currently a professor. His research interests include discrete-event systems, hybrid systems, robust control, and image processing. He was a consultant for GM, Ford, Hitachi and other auto companies. Dr. Lin co-authored a paper with S. L. Chung and S. Lafortune that received a George Axelby outstanding paper award from IEEE Control Systems Society. He is also a recipient of a research initiation award from the National Science Foundation, an outstanding teaching award from Wayne State University, a faculty research award from ANR Pipeline Company, and a research award from Ford. He was an associate editor of IEEE Transactions on Automatic Control.   相似文献   

19.
Internet video streaming is a widely popular application however, in many cases, congestion control facilities are not well integrated into such applications. In order to be fair to other users that do not stream video, rate adaptation should be performed to respond to congestion. On the other hand, the effect of rate adaptation on the viewer should be minimized and this extra mechanism should not overload the client and the server. In this paper, we develop a heuristic approach for unicast congestion control. The primary feature of our approach is the two level adaptation algorithm that utilizes packet loss rate as well as receiver buffer data to maintain satisfactory buffer levels at the receiver. This is particularly important if receiver has limited buffer such as in mobile devices. When there is no congestion, to maintain best buffer levels, fine grain adjustments are carried out at the packet level. Depending on the level of congestion and receiver buffer level, rate shaping that involves frame discard and finally rate adaptation by switching to a different pre-encoded video stream are carried out. Additive increase multiplicative decrease policy is maintained to respond to congestion in a TCP- friendly manner. The algorithm is implemented and performance results show that it has adaptation ability that is suitable for both local area and wide area networks. E. Turhan Tunali received B.Sc. Degree in Electrical Engineering from Middle East Technical University and M.Sc. Degree in Applied Statistics from Ege University, both in Turkey. He then received D.Sc. Degree in Systems Science and Mathematics from Washington University in St. Louis, U.S.A. in 1985. After his doctorate study, he joined Computer Engineering Department of Ege University as an assistant professor where he became an associate professor in 1988. During the period of 1992–1994, he worked in Department of Computer Technology of Nanyang Technological University of Singapore as a Visiting Senior Fellow. He then joined International Computer Institute of Ege University as a Professor where he is currently the director. In the period of 2000–2001 he worked in Department of Computer Science of Loyola University of Chicago as a Visiting Professor. His current research interests include adaptive video streaming and Internet performance measurements. Dr. Tunali is married with an eighteen year old son. Aylin Kantarci received B.Sc., M.Sc. and Ph.D. degrees all from Computer Engineering Department of Ege University, Izmir, Turkey, in 1992, 1994 and 2000, respectively. She then joined the same department as an assistant professor. Her current research interests include adaptive video streaming, video coding, operating systems, multimedia systems and distributed systems. Nukhet Ozbek received B.Sc. degree in Electrical and Electronics Engineering from School of Engineering and M.Sc. degree in Computer Science from International Computer Institute both in Ege University, Izmir, Turkey. From 1998 to 2003 she worked in the DVB team of Digital R&D at Vestel Corporation, Izmir-Turkey that produces telecommunication and consumer electronics devices. She is currently a Ph.D. student and a research assistant at International Computer Institute of Ege University. Her research areas include video coding and streaming, multimedia systems and set top box architectures.  相似文献   

20.
While integrating components into systems, we will be confronted with problems concerned with the interoperability of components due to the interaction mismatches at multiple levels, such as interaction behaviors between components and features imposed by architectural styles. In this paper, we studied the interoperability of components and explored the approach to supporting high interoperability of components involved in mismatching interactions. First, we formalized components involved in different architectural styles in the pi-calculus. Next, we studied the formal foundation of the interoperability of components for reasoning about the conditions under which two heterogeneous components are possible to interoperate and interconnect together properly. Then, we described a wrapper-based solution for integrating components into systems that impose mismatching assumptions about usage of the components. In the end, we presented an agent-based implementation for the solution, in which agents are used to wrap components and can automatically resolve multiple levels of interaction mismatches between components. We also gave a simple example to illustrate our approach.
Hong MeiEmail:

Wenpin Jiao   received his BA and MS degree in computer science from East China University of Science and Technology in 1991 and 1997, respectively, and Ph.D. degree in computer science from the Institute of Software at Chinese Academy of Sciences in 2000. From 2000 to 2002, he was a postdoctoral fellow in the Department of Computer Science at the University of Victoria, Canada. Since 2004, he has been an associate professor in the School of Electronics Engineering and Computer Science at Peking University. His major research focus is on the autonomous component technology, multi-agent systems, and software engineering. Hong Mei   received his BA and MS degrees in computer science from Nanjing University of Aeronautics and Astronautics in 1984 and 1987, respectively; and Ph.D. degree in computer science from Shanghai Jiaotong University in 1992. From 1992 to 1994, he was a postdoctoral research fellow at Peking University. Since 1997, he has been a professor and Ph.D. advisor in the Department of Computer Science and Engineering at Peking University. He has also served as vice dean of the School of Electronics Engineering and Computer Science and the Capital Development Institute at Peking University, respectively. His current research interests include: Software Engineering and Software Engineering Environment, Software Reuse and Software Component Technology, Distributed Object Technology, Software Production Technology, and Programming Language. He is a member of the Expert Committee for Computer Science and Technology of State 863 High-Tech Program, a chief scientist of State 973 Fundamental Research Program, a consultant of Bell Labs Research China, the director of Special Interest Group of Software Engineering of China Computer Federation (CCF), a member of the Editorial Board of Sciences in China (Series F), ACTA ELECTRONICA SINICA and Journal of Software, and a guest professor of NUAA. He also served at various Program Committees of international conferences.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号