首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
通过扫描电子显微镜对氧化锆增韧的羟基磷灰石和纯羟基磷灰石的裂纹扩展和断口形貌特征的观察,发现增韧的羟基磷灰石是以沿晶方式断裂,而纯羟基磷灰石是以解理方式断裂。本文分析了造成增韧前后两种材料不同断裂方式的机制,并讨论了颗粒增韧生物陶瓷的机理。  相似文献   

2.
The compressive, flexural, torsional and dynamic torsional strengths of polycrystalline hydroxyapatite sintered at a temperature of 1300° C for 3 h were found to be 509, 113, 76 and 68 MPa, respectively. The mechanical properties of polycrystalline hydroxyapatite are compared with those of cortical bone, dentine and enamel. SEM observation of the fracture surfaces indicates a predomination of transgranular failures.  相似文献   

3.
Fracture mechanics concepts are applied to gain some understanding of the hierarchical nanocomposite structures of hard biological tissues such as bone, tooth and shells. At the most elementary level of structural hierarchy, bone and bone-like materials exhibit a generic structure on the nanometer length scale consisting of hard mineral platelets arranged in a parallel staggered pattern in a soft protein matrix. The discussions in this paper are organized around the following questions: (1) The length scale question: why is nanoscale important to biological materials? (2) The stiffness question: how does nature create a stiff composite containing a high volume fraction of a soft material? (3) The toughness question: how does nature build a tough composite containing a high volume fraction of a brittle material? (4) The strength question: how does nature balance the widely different strengths of protein and mineral? (5) The optimization question: Can the generic nanostructure of bone and bone-like materials be understood from a structural optimization point of view? If so, what is being optimized? What is the objective function? (6) The buckling question: how does nature prevent the slender mineral platelets in bone from buckling under compression? (7) The hierarchy question: why does nature always design hierarchical structures? What is the role of structural hierarchy? A complete analysis of these questions taking into account the full biological complexities is far beyond the scope of this paper. The intention here is only to illustrate some of the basic mechanical design principles of bone-like materials using simple analytical and numerical models. With this objective in mind, the length scale question is addressed based on the principle of flaw tolerance which, in analogy with related concepts in fracture mechanics, indicates that the nanometer size makes the normally brittle mineral crystals insensitive to cracks-like flaws. Below a critical size on the nanometer length scale, the mineral crystals fail no longer by propagation of pre-existing cracks, but by uniform rupture near their limiting strength. The robust design of bone-like materials against brittle fracture provides an interesting analogy between Darwinian competition for survivability and engineering design for notch insensitivity. The follow-up analysis with respect to the questions on stiffness, strength, toughness, stability and optimization of the biological nanostructure provides further insights into the basic design principles of bone and bone-like materials. The staggered nanostructure is shown to be an optimized structure with the hard mineral crystals providing structural rigidity and the soft protein matrix dissipating fracture energy. Finally, the question on structural hierarchy is discussed via a model hierarchical material consisting of multiple levels of self-similar composite structures mimicking the nanostructure of bone. We show that the resulting “fractal bone”, a model hierarchical material with different properties at different length scales, can be designed to tolerate crack-like flaws of multiple length scales.  相似文献   

4.
The recent surging interest in nanotechnology is providing a strong impetus to understanding fracture processes in nanoscale materials. There are open challenges because many classical concepts of fracture mechanics are no longer applicable as the characteristic dimension of a structure becomes comparable to or smaller than the size of the cohesive zone near a crack tip. In materials with a characteristic size on the nanometer scale, the fracture process is often strongly dominated by the surface energy and nonlinear material properties. In this paper, we apply a recently developed virtual-internal-bond (VIB) method to investigating fracture of such nanomaterials. In the VIB method, a cohesive interactive law is directly incorporated into the constitutive model so that separate fracture criteria are no longer necessary. We demonstrate that, at a critical length scale typically on the order of nanometer scale, the fracture mechanism changes from the classical Griffith fracture to one of homogeneous failure near the theoretical strength of solids; when this transition occurs, the classical singular deformation field near a crack tip disappears and is replaced by a uniform stress distribution with no stress concentration near the crack tip.  相似文献   

5.
The nanoscale deformation and fracture mechanisms of parallel fibered bone are investigated using a novel combination of in-situ tensile testing to failure combined with high brilliance synchrotron X-ray scattering. The technique enables the simultaneous measurement of strain at two length scales – in the mineralized collagen fibrils (~100 nm diameter) along with the macroscopic strain (~1 mm diameter). Under constant rate tensile loading, we find that fibril strain saturates beyond the macroscopic yield point of bone at ~0.5 %, providing a correlation between the failure mechanisms at the nanoscale and the bulk structural properties. When bone stretched beyond the yield point is unloaded back to zero stress, the fibrils are contracted relative to their original state. We examine the findings in the context of a fiber – matrix shearing model at the nanometer level.  相似文献   

6.
Investigations on the fracture properties of wood in relation to its microstructure are reported. The inhomogeneous and hierarchical structure of wood is addressed. Wood species, the influence of orientation, the role of structural features, like rays are considered and discussed. Likewise the mode of loading, which determines the mode of fracturing, and the influence of humidity have been studied by using new fracture mechanical techniques and ways of evaluation. The specific fracture energy has been determined under crack opening conditions. In-situ loading in an environmental scanning electron microscope (ESEM), which allows observation in moistured condition, has been performed in order to investigate the mechanisms of fracturing of wood on a sub-microscopic scale. In the nanometer range, especially the influence of the microfibril angle on deformation and fracture behaviour has been studied.  相似文献   

7.
纳米TiO2对不饱和聚酯树脂(TiO2/UPR)的改性   总被引:8,自引:0,他引:8  
将纳米TiO2粉加入到不饱和聚酯中进行同时增韧增强改性,在用简支梁冲击强度表征纳米TiO2/UPR的韧性时,发现树脂有明显的脆韧转变现象,在脆-韧转变点TiO2含量为6%(质量分数),纳米TiO2/UPR弯曲强度和冲击强度分别比UPR提高了55%和46%。在扫描电子显微镜下观测纳米TiO2/UPR的冲击断口形貌时发现,在脆-韧转变点附近纳米TiO2/UPR的微观形态发生了从脆性断裂到韧性断裂的形貌特征。  相似文献   

8.
We present a multiple scale approach for modeling multiple crack growth in human cortical bone under tension. The Haversian microstructure, a four phase composite, is discretized by a classical finite element method fed with the morphological and mechanical characteristics, experimentally measured, to mimic human bone heterogeneity at the micro scale. The fracture strength of human bone, exhibiting aging signs, is investigated through tensional percolation simulations in statistical microstructures. The cracks are initiated at the micro scale at locations where a critical elastic-damage strain-driven criterion is met. The cracks, modeled by the eXtended Finite Element Method, are then grown until complete failure when a critical stress intensity factor criterion is attained. The model provides the fracture strength and the global response at the material scale and the stress–strain fields at the microscopic level. The model creates a constitutive law at the material scale and emphasizes the influence of the microstructure on bone failure and fracture risk assessment. These results are validated against experiments.  相似文献   

9.
Bioabsorbable polymers are of interest as internal fracture fixation devices. Self-reinforcement has been developed to improve the mechanical properties of the material and the addition of calcium phosphate fillers improves the bioactivity. Composite plates, produced by compression molding preimpregnated sheets of polylactide fibers coated in a polylactide matrix have been degraded in simulated body fluid for up to 12 weeks. Some samples also contained hydroxyapatite or tricalcium phosphate filler particles. Degradation was measured by monitoring the water uptake and mass decrease of the samples, as well as carrying out four point bend tests to assess the mechanical properties of the material. By 12 weeks, it was found that the unfilled samples absorbed more water and showed greater mass loss than the samples containing calcium phosphate fillers. Also, the flexural modulus and yield stress decreased significantly at week 12 for the unfilled samples. Adding hydroxyapatite (HA) or tricalcium phosphate (TCP) to the composite increased the flexural modulus and yield strength to values within the range of those reported for cortical bone and these values were maintained over the 12-week period.  相似文献   

10.
采用超音速微粒轰击(SFPB)表面纳米化技术,在TC11钛合金表层构筑了一定层深的梯度纳米结构,研究了SFPB气体压力对TC11钛合金微观组织和力学性能的影响。结果表明,在低气体压力(0.5 MPa)下,形成了25μm厚的严重塑性变形层,表层晶粒细化至纳米量级(17.7 nm)。随着气体压力的增大,表层纳米晶尺寸降低,严重塑性变形(SPD)层增大,在高气体压力(1.5 MPa)下,表层纳米晶尺寸和严重塑性变形层深度分别为9.4 nm和51μm。随着SFPB气体压力的增大,表层显微硬度及硬化层深度逐渐增加,屈服强度、抗拉强度显著增加,而伸长率变化不大,断口形貌从典型的韧性断裂向韧-脆性混合断裂转变。  相似文献   

11.
不同厚度的10CrN iMnMo低合金高强钢连铸连轧并热处理后,强度变化不大,但冲击韧性值却相差较大.采用金相显微镜和透射电子显微镜等手段对低合金钢10CrN iMnMo轧制态及热处理后的组织和性能进行研究.结果表明,轧制态的低合金钢板材上有大量的纳米级碳化物弥散分布于铁素体基体上,但其组织由于板厚的不同而不同.厚板≥12 mm其组织为铁素体+贝氏体;而薄板的组织为铁素体+贝氏体+马氏体+残余奥氏体.在后续热处理中,厚板的强度降低,而冲击韧性变化很大.薄板的强度变化较厚板小,并且冲击韧性变化不明显,这主要是由于马氏体的存在和碳化物析出强化的作用.  相似文献   

12.
The main theme here is to fabricate PLA (poly lactic-acid)/CDHA (carbonated calcium deficient hydroxyapatite) bionanocomposites, where both the constituents are biocompatible and biodegradable with one dimension in nanometer scale. Such materials are important in tissue engineering applications. The bionanocomposite fibers were fabricated via electrospinning. There are two important signatures of this paper. First, CDHA, rather than HA, is added to PLA as the second phase. As opposed to HA, CDHA mimics the bone mineral composition better and is biodegradable. Therefore, PLA/CDHA fibers should have better biodegradability while maintaining a physiological pH during degradation. To the best of our knowledge, this is the first attempt of electrospinning of such a composite. Second, the CDHA nanoparticles were synthesized using the benign low temperature biomimetic technique, the only route available for the retention of carbonate ions in the HA lattice. The structural properties, degradation behavior, bioactivity, cell adhesion, and growth capability of as-fabricated PLA/CDHA bionanocomposites were investigated. The results show that the incorporation of CDHA decreased PLA fiber diameters, accelerated PLA degradation, buffered pH decrease caused by PLA degradation, improved the bioactivity and biocompatibility of the scaffold. These results prove that PLA/CDHA bionanocomposites have the potential in tissue regeneration applications.  相似文献   

13.
Small scale explosive loading of sandwich panels with low relative density pyramidal lattice cores has been used to study the large scale bending and fracture response of a model sandwich panel system in which the core has little stretch resistance. The panels were made from a ductile stainless steel and the practical consequence of reducing the sandwich panel face sheet thickness to induce a recently predicted beneficial fluid-structure interaction (FSI) effect was investigated. The panel responses are compared to those of monolithic solid plates of equivalent areal density. The impulse imparted to the panels was varied from 1.5 to 7.6 kPa s by changing the standoff distance between the center of a spherical explosive charge and the front face of the panels. A decoupled finite element model has been used to computationally investigate the dynamic response of the panels. It predicts panel deformations well and is used to identify the deformation time sequence and the face sheet and core failure mechanisms. The study shows that efforts to use thin face sheets to exploit FSI benefits are constrained by dynamic fracture of the front face and that this failure mode is in part a consequence of the high strength of the inertially stabilized trusses. Even though the pyramidal lattice core offers little in-plane stretch resistance, and the FSI effect is negligible during loading by air, the sandwich panels are found to suffer slightly smaller back face deflections and transmit smaller vertical component forces to the supports compared to equivalent monolithic plates.  相似文献   

14.
The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer–ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical–chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.  相似文献   

15.
Shape of mineral (e.g. hydroxyapatite (HAP) or aragonite) crystals can be a strong determinant of the nanoscale strength of hard biological materials such as bone, dentin, and nacre. This work presents an understanding of the effect of HAP shape variation on nanoscale strength of model TC-HAP biomaterials. For this purpose, 3-dimensional molecular dynamics analyses of direction dependent tensile deformation in two structurally distinct TC-HAP cells with HAP crystals in needle shaped configuration and plate shaped configuration are performed. Analyses point out that the peak interfacial strength for failure is the highest for supercells with plate shaped HAP crystals. In addition, the plate shaped HAP crystals result in the localization of peak stress over a larger length scale indicating higher fracture strength. Peak strength during transverse loading is always found to be lower than that during the longitudinal loading. However, interfacial strength shows a reverse trend. Overall, analyses point out that HAP crystal shape along with the optimal direction of applied loading with respect to the TC-HAP orientation strongly influence biomaterial strength at the nanoscale.  相似文献   

16.
Comparison of microstructure and strength of Cu-9 Fe-1.2 Ag microcomposite wires and sheets obtained by cold drawing or cold rolling combined with intermediate heat treatments has been made. The primary and secondary dendrite arms are aligned along the drawing or rolling direction and elongated into filaments after cold working. The microstructural scale of wire-drawn microcomposites was found to be finer than that of rolled microcomposites at the same drawing strain. The more effective microstructural refinement induced by unidirectional metallic flow and co-deformation of filament and Cu matrix resulted in finer microstructure in microcomposite wires. The ultimate tensile strength and the conductivity of wire-drawin Cu-Fe-Ag microcomposite were higher than those of rolled Cu-Fe-Ag microcomposites. The strength of Cu-Fe-Ag microcomposites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The good mechanical and electrical properties of wires may be associated with the more uniform distribution of fine filaments. The fracture surfaces of Cu-Fe-Ag wires and sheets showed ductile-type fracture and iron filaments were occasionally observed on the fracture surfaces. The fracture surface of Cu-Fe-Ag wires showed generally finer microstructural morphology than that of Cu-Fe-Ag sheets, consistent with the finer microstructural scale in Cu-Fe-Ag wires.  相似文献   

17.
Carbon doping can induce unique and interesting physical properties in hexagonal boron nitride (h‐BN). Typically, isolated carbon atoms are doped into h‐BN. Herein, however, the insertion of nanometer‐scale graphene quantum dots (GQDs) is demonstrated as whole units into h‐BN sheets to form h‐CBN. The h‐CBN is prepared by using GQDs as seed nucleations for the epitaxial growth of h‐BN along the edges of GQDs without the assistance of metal catalysts. The resulting h‐CBN sheets possess a uniform distrubution of GQDs in plane and a high porosity macroscopically. The h‐CBN tends to form in small triangular sheets which suggests an enhanced crystallinity compared to the h‐BN synthesized under the same conditions without GQDs. An enhanced ferromagnetism in the h‐CBN emerges due to the spin polarization and charge asymmetry resulting from the high density of C? N and C? B bonds at the boundary between the GQDs and the h‐BN domains. The saturation magnetic moment of h‐CBN reaches 0.033 emu g?1 at 300 K, which is three times that of as‐prepared single carbon‐doped h‐BN.  相似文献   

18.
在柠檬酸中添加壳聚糖配成的固化液与磷酸钙骨水泥(CPC)调和制备的骨修复材料具有类似口香糖的胶状特性, 可应用于碎骨粘结, 称之为磷酸钙骨粘合剂(CPCBA)。本研究考察了柠檬酸的含量对抗压强度、固化时间、水化产物和粘结强度的影响, 同时对该体系进行了初步的体外生物学评价。结果显示, 加入柠檬酸可以缩短固化时间并且时间可以通过柠檬酸的含量进行调控, 同时也改善了抗水性能。壳聚糖可以与骨水泥中的钙离子发生螯合作用, 可以增加界面的粘结强度。小鼠原成骨细胞(MC3T3-E1)在其表面粘附良好, 该体系骨水泥有望取代PMMA成为新的骨粘结剂。  相似文献   

19.
Liquid-phase transmission electron microscopy (TEM) offers a real-time microscopic observation of the nanometer scale for understanding the underlying mechanisms of the growth, etching, and interactions of colloidal nanoparticles. Despite such unique capability and potential application in diverse fields of analytical chemistry, liquid-phase TEM studies rely on information obtained from the limited number of observed events. In this work, a novel liquid cell with a large-scale array of highly ordered nanochambers is constructed by sandwiching an anodic aluminum oxide membrane between graphene sheets. TEM analysis of colloidal gold nanoparticles dispersed in the liquid is conducted, employing the fabricated nanochamber array, to demonstrate the potential of the nanochamber array in quantitative liquid-phase TEM. The independent TEM observations in the multiple nanochambers confirm that the monomer attachment and coalescence processes universally govern the overall growth of nanoparticles, although individual nanoparticles follow different growth trajectories.  相似文献   

20.
羟基磷灰石/淀粉基复合生物材料   总被引:1,自引:1,他引:0  
淀粉基(starch-based)材料是一类重要的生物降解聚合物,羟基磷灰石(HA)是人体骨骼的主要成分,以淀粉基材料为基体、以HA为增强材料的HA/淀粉基复合材料是一类新型的复合生物材料,其具有良好的生物相容性,在骨修复领域具有巨大的应用潜力.初步对该复合材料进行了归类,并介绍了其制备工艺、性能和应用等方面的研究近况,指出改进复合工艺、采用纳米级HA增强并进行表面改性是其发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号