首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of novel photocatalysts, H3PW12O40-Y-TiO2 nanocomposites with different H3PW12O40 loading levels (10%-40%) were prepared by impregnation method. And the Y-TiO2 support, doped with yttrium, was synthesized via sol-gel technique. The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), nitrogen adsorption-desorption analysis and scanning electron microscopy (SEM). The processes allowed obtaining Keggin structure and crystallized anatase with large BET surface area as well as uniform distribution. The effects of H3PW12O40 loadings, catalyst dose, initial pH and concentration of dye solution on the degradation kinetics of methyl orange under UV light (λ≥365 nm) were discussed. Kinetics studies showed that the photocatalytic degradation of methyl orange fitted the apparent first-order reaction. Methyl orange was totally degraded in 21 min under optimum conditions: 20% loading, 0.03 g dose and pH 1.0. The catalyst was stable and easily to be separated from reaction system for recovery.  相似文献   

2.
A series of photocatalysts, K11[Ln(PW11O39)2]/PVA (Ln=La, Ce, Pr, Nd, Sm) were prepared by K11[Ln(PW11O39)2] (Ln=La, Ce, Pr,Nd, Sm) containing five kinds of lanthanides and polyvinyl alcohol as the support. The catalysts obtained were characterized by Fourier trans-form infrared spectra, UV-vis spectra, powder X-ray diffraction, and scanning electron microscopy, indicating that the structure of K11[Ln(PW11O39)2] and polyvinyl alcohol remained intact, respectively. The photocatalysts exhibited efficient catalytic activity to degrade methyl orange, Congo Red, Ponceau 2R. The maximal degradation conversions of the three kinds of dyes were 99.58%, 47.61%, 72.42%, respectively.  相似文献   

3.
A series of pure and Y3+-doped TiO2 nanoparticles with high photocatalytic activities were prepared by a sol-gel method using tetra-n-butyl titanate as precursor.The as-prepared catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and diffuse reflectance spectroscopy(DRS).The results indicated that yttrium doping could effectively reduce the crystalline size,inhibit the anatase-to-rutile phase transformation and surppress the recombination of the photogenerated electron-h...  相似文献   

4.
5.
BiVO4 photocatalysts co-doped with La and B were prepared by sol-gel method using citric acid as chelate.The samples were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),Brumauer-Emmett-Teller(BET),UV-Vis diffuse reflectance spectra(DRS) and the photocatalytic activity was investigated by photocatalytic degradation of methyl orange(MO).The results showed that boron and lanthanum ions incorporated into the lattice of BiVO4,and co-doping led to more surface oxygen vacancies,high specific surface areas,small crystallite size,narrow band gap and intense light absorbance in visible region.And the doped La(III) ions could help the separation of photogenerated electrons.Compared with BiVO4 and B-BiVO4,the photocatalytic activity of La-B co-doped BiVO4 was remarkably improved due to the synergistic effects of the co-doped ions.The degradation rate of MO in 60 min was 98.4% when La doping content was 0.05 mol.%,which was much higher than that of pure BiVO4(20%) and B-BiVO4(37%).  相似文献   

6.
Rare earth ions La3+ and Eu3+ co-doped TiO2 photocatalyst (La-Eu/TiO2) was prepared by sol-gel method, and characterized by various techniques such as X-ray diffraction (XRD), specific surface area and porosity (BET and BJH), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the La-Eu/TiO2 was evaluated by the degradation of methylene blue (MB) under UV light irradiation. The catalyst had a relatively uniform particle diameter distribution in the range of 40–60 nm. When calcining at 600°C, the XRD patterns of La-Eu/TiO2 indicated the anatase phase, while the XPS patterns showed the Ti4+, La3+ and Eu3+ ions existence. The DRS spectra showed red shift in the band-gap transition. The experimental results of MB degradation demonstrated that the photocatalytic activity of La-Eu/TiO2 was significantly enhanced due to better separation of photogenerated electron-hole pairs.  相似文献   

7.
An inorganic nanomaterials combination of Sm, Ag, and TiO2 was synthesized using supercritical fluid drying (SCFD) combined with solgel techniques. The structure, photocatalysis and bacteriostatic activity of the materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XRPS), photocatalytic performance, and antibacterial activity experiments. The XRD results showed that the average particle diameter of Sm/Ag/TiO2 was 14.62 nm and Ag and Sm ions were dispersed on the surface of TiO2 in a highly dispersed, amorphous form. The TEM image showed that the size of the particle was 12 nm using the scherer formula. The XPS result showed that the element Sm was doped and Ag was loaded inorganic nanomaterials successfully. Sm/Ag/TiO2 exhibited optimal photocatalytic properties at 600 oC, the photocatalytic optimal proportion of Sm/Ag/TiO2 was 2:2:100. When the molar ratio was 2:2:100, the bacteriostatic circle diameter was 16 mm for Staphylococcus aureus, the minimum bacteriostatic concentration was 200μg/mL for white beads coccus, and the minimum bactericidal concentration was 2×10^4μg/mL for white beads coccus. The SEM results showed that the antibacterial material attached to the candida albicans cell surface, cells appeared fold deformation. Therefore the inorganic nanomaterials Sm/Ag/TiO2 had high temperature resistance, good photocatalytic and antibacterial characteristics in visible light.  相似文献   

8.
The Ce-TiO2/KL (diatomite) ball photocatalyst was prepared and characterized based on the pretreated diatomite. The resuits showed that comparing with the crude diatomite, proper pretreatment could significantly improve its SiO2 purity and specific surface area. The surface of diatomite was clear with uniform pore structure and big pore size. With diatomite ball as carder, the supported Ce-TiO2/KL ball photocatalyst was prepared by sol-gel method. The photocatalytic performances of the supported Ce-TiO2/ KL ball and Ce-TiO2/KL powder photocatalysts under various preparation conditions were studied in view of photocatalytic degrada- tion rate of Rhodamine B (Rh B) solution. The degradation rate of the ball photocatalysts for Rh B reached 94.6% and could be reused for many times, which showed much better photocatalytic performance and stability than powder photocatalysts.  相似文献   

9.
Rare earth ions La3+ and Eu3+ co-doped TiO2 photocatalyst (La-Eu/TiO2) was prepared by sol-gel method, and characterized by various techniques such as X-ray diffraction (XRD), specific surface area and porosity (BET and BJH), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the La-Eu/TiO2 was evaluated by the degradation of methylene blue (MB) ...  相似文献   

10.
A novel kind of magnetically separable photocatalyst of cerrium-doped mesoporous titanium dioxide coated magnetite (Ce/MTiO2/ Fe3O4) was prepared and its activities under UV and visible light were reported. The catalysts with Ce/MTiO2 shell and Fe3O4 core were pre-pared by coating photoactive Ce/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with pre-cursors of ammonium ceric nitrate and TBT in the presence of Fe3O4 particles. The MTiO2 shell was for photocatalysis, the Fe3O4 core was for separation by the magnetic field and the doped Ce was used to enhance the photocatalytic activity of MTiO2. The morphological, struc-tural and optical properties of the prepared samples were characterized by Brunauer-Emmett-Teller (BET) surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of cerrium-doped content on the photocatalytic activity was studied and the result revealed that 0.5 mol.% Ce/MTiO2/Fe3O4 exhibited highest photoactivity. The photocatalytic activities of obtained photocatalysts under UV and visible light were estimated by measuring the degradation rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxi-dation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Ce/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by an external magnetic filed. So, the photocatalyst can be reused without any mass loss. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.  相似文献   

11.
采用溶胶–凝胶法制备纯TiO_2和掺氮TiO_2纳米颗粒(N-TiO_2),然后通过光催化还原在其表面附Ag,得到表面附Ag的纳米TiO_2(即Ag/TiO_2)和掺N附Ag纳米TiO_2(即Ag/N-TiO_2),利用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、光致发光光谱仪(photoluminescence spectroscopy,PL)、X射线光电子能谱(XPS)以及紫外可见漫反射光谱分析(UV-VIS DRS)对TiO_2及其掺杂改性后的组成和结构、光吸收性能以及可见光下对甲基橙溶液的光催化活性等进行表征。结果表明,所有样品均为锐钛矿型,Ag/TiO_2的平均晶粒度为20.4 nm;N以替代型N-Ti-O、间隙型Ti-O-N(或氧化态Ti-O-N-O)的形式存在于晶格中,银以Ag0形式附着在TiO_2表面;N掺杂抑制TiO_2晶粒的生长,并抑制光生电子与空穴的复合,从而促进TiO_2对可见光的吸收;表面附Ag对TiO_2晶格没有明显影响,但在450~580 nm可见光区产生强烈的表面等离子吸收带并延长至近红外区。TiO_2及其掺杂改性后对甲基橙的光催化效果为Ag/N-TiO_2Ag/TiO_2N-TiO_2TiO_2(或Degussa P25),Ag/N-TiO_2在可见光下对甲基橙(p H=3)进行光催化降解,150 min时降解率达到95%。  相似文献   

12.
Preparation and Photocatalytic Property of Er_2O_3/TiO_2 Complex Photocatalyst  相似文献   

13.
We documented(ⅰ) the decolorization of wastewater in visible light,which contains methyl orange,crystal violet and indigo carmine dyes,using La0.7Sr0.3Mn1-xFexO3(x=0.0,0.05,0.1 and 0.5) manganites and(ⅱ) efficient separation of photocatalysts from water using magnetic field.These ceramic photocatalysts were sintered at 1050℃ for 12 h.Ceramics were characterized by X-ray diffraction(XRD),soft X-ray absorption spectroscopy(SXAS),Fourier transf...  相似文献   

14.
The nanocomposite materials containing rare earths, titanium dioxide and clay (RE/TiO2/Clay) were characterized and tested for the photocatalytic decomposition of formaldehyde. The results show that nanocomposite materials prepared by doping appropriate rare earth elements have better photocatalytic properties than that prepared by doping excessive rare earth elements. The photocatalytic mechanism of composite materials was studied by integrating the theory of photocatalysis with experiment results. Because the site of photocatalytic reaction was limited in the interspace of clay, photocatalytic reaction occurred by two steps: firstly, organic molecules dispersed into the interlayers of clay; secondly, organic molecules and photocatalyst of RE/TiO2 occurred photocatalytic reaction, resulting in forming carbon dioxide.  相似文献   

15.
Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.  相似文献   

16.
Cerium dioxide was used for the first time as reactive sorbent for the degradation of the organophosphate pesticides parathion methyl,chlorpyrifos,dichlofenthion,fenchlorphos,and prothiofos,as well as of some chemical warfare agents—nerve gases soman and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate(VX).CeO2 specimens were prepared by calcination of basic cerous carbonate obtained by precipitation from an aqueous solution.The CeO2 samples containing certain amounts(1 wt.%–5 wt.%) of the neighboring lanthanides(La,Pr,Nd) were prepared in a similar way from pure lanthanide salts.It was shown that ceria accelerated markedly the decomposition of parathion methyl causing the cleavage of the P-O-aryl bond in the pesticide molecule.A similar reaction mechanism was proposed for the degradation of other organophosphate pesticides and nerve agents.The degradation times(reaction half-times) were in an order of minutes in the presence of CeO2,compared to hours or days under common environmental conditions.The reaction in suitable organic solvents allowed conversions of about 90% for parathion methyl loading of 20 mg pesticide/g CeO2 within 2 h with a reactant half-life in the order of 0.1 min.The key parameter governing the degradation efficiency of CeO2 was the temperature during calcination.At optimum calcination temperature(about 773.15 K),the produced ceria retained a sufficiently high surface area,and attained an optimum degree of crystallinity(related to a number of crystal defects,and thus potential reactive sites).The presence of other lanthanides somewhat decreased the reaction rate,but this effect was not detrimental and permitted the possible use of chemically impure ceria as a reactive sorbent.A fast organophosphate degradation was demonstrated not only in non-polar solvents(such as heptane),but also in polar aprotic solvents(acetonitrile,acetone) that are miscible with water.This opens new possibilities for designing more versatile decontamination strategies.The cleavage of phosphate ester bonds is of a great importance not only for the degradation of dangerous chemicals(chemical weapons,pesticides),but also for interactions of ceria(especially the nano-sized one) in biologically relevant systems.  相似文献   

17.
Influence of La and Nd Complexes with Citric Acid on Cellulase Activity and Its Mechanism  相似文献   

18.
Effect of Ho-doping on photocatalytic activity of nanosized TiO2 catalyst   总被引:1,自引:0,他引:1  
Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to evaluate their photocatalytic activities. The effects of Ho doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalysts were investigated by means of techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Diffuse Reflectance UV-Vis Spectroscopy (UV-Vis DRS), Fourier Transform Infrared (FT-IR), and Photo-Luminiscence (PL) spectra. Moreover, the modification mechanism of Ho doping was also discussed. The results showed that Ho doping could inhibit phase transformation from anatase to rntile, suppress the growth of TiO2 grains, cause blue shift of the absorption spectrum edge, accelerate surface hydroxylation, and enhance the separation efficiency of photoinduced electron-hole pairs, which resulted in a significant improvement in the photoreactivity of Ho-doped TiO2. Among them, the Ho-doped TiO2 calcined at 500℃ achieved the highest photocatalytic activity.  相似文献   

19.
Rare earth elements have been used for 30 years in Chinese agriculture to improve growth and yield. Numerous scientific studies have shown improvements in physiology, mineral nutrition, and growth, though deleterious effects may also occur. Very few studies have been performed on woody species. We exponentially fertilized one-year old black walnut (Juglans nigra L.) seedlings with 0, 0.1, 1, 10, or 100 mg lanthanum (La) and 800 mg nitrogen (N) as NaNO3, (NH4)2SO4, NH4NO3, or no N. One month following final fertilization, growth, mineral nutrition, photosynthesis, chlorophyll, and nitrate reductase activity were assessed. Plants fertilized with the highest level of La had reduced fine root growth, concentrations of magnesium, calcium, nickel, and phosphorus, photosynthesis levels, and chlorophyll a content. Foliar La concentration showed an interaction effect, with three to four times greater concentration in plants fed at 100 mg La to those given 10 mg La for (NH4)2SO4 and NH4NO3 treatments. The results suggested no beneficial effects of La addition at levels used in this study and interactions between N source and La levels did not have an important impact on the growth, mineral nutrition, or physiology of black walnut seedlings.  相似文献   

20.
Thelanthanidecomplexesoforganiclig andsasfluorescentmaterialshavereceivedex tensiveattention .Theuseoffluorescentorgano lanthanidecomplexesrequirehighfluo rescenceintensityandlowcostcomplexes .Inrecentyears ,thefluorescenceenhancementofTb(Ⅲ )orEu(Ⅲ )complexe…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号