首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The NaYF4:Yb,Er nanocrystals were synthesized via the thermal decomposition ot metal oleate precursors, lhe nanocrys- tals in hexagonal structure were highly uniform and in size of 25 nm. The bright upconversion luminescence was observed under the excitation of 980 nm laser and the upeonversion emission spectra were investigated at different pump powers. The emission intensity ratio of red light to green light linearly increased with pump power increasing. This result indicated that there existed a large threshold power of saturation pump for the first excitation state in NaYFa:Yb,Er nanocrystals comparing to that in bulk material.  相似文献   

2.
Er3+-Yb3+ codoped oxy-fluoro-tungstosilicate glasses with infrared-to-visible frequency upconversion luminescence were prepared by melting quenching in air.The effects of Er3+ doping on the optical properties of the samples were measured by means of techniques such as optical absorption spectra and photoluminescence spectra.The results showed that intense green and red signals centered at 546 and 665 nm,corresponding to the 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ by a multiphoton stepwise phonon-assisted excited-state absorption process,respectively,were simultaneously observed by exciting the samples with a diode laser operating at 980 nm at room temperature.The upconversion process was found very sensitive to Er3+ content at a constant Yb2O3 content of 5 mol.%.With the increase of Er3+ content from 0.5% to 1.5%,the upconversion intensity increased gradually.Further increasing of Er3+ content to 3.0% resulted in a significant fluorescence quenching.Moreover,the possible upconversion mechanisms were discussed based on the energy-matching conditions and the quadratic dependence on excitation power.  相似文献   

3.
Under the excitation of 980 nm diode laser, intense green emission (5F4+5S2-5I8) of Ho3+ was observed in Ho3+ and Yb3+ co-doped cubic Y2O3. The doping concentration and laser power dependence of the upconverted emission were studied. The decay curves of 5F4+5S2 emission of Ho3+ under the excitation of 355 nm pulse laser were measured to investigate the energy transfer process between Ho3+ and Yb3+. The results indicated that two-photon process was responsible for the upconversion (UC) emission. The Ho3+ con...  相似文献   

4.
Optical characteristics and upconversion dynamics of Er3+ in Er3+/Yb3+:LiLa(MoO4)2 crystals were investigated. The absorption spectra, fluorescence spectra and the fluorescence decay curves were analyzed at room temperature. The infrared emission at 1538 nm and visible emissions at 520–569 and 640–670 nm, corresponding to 2H11/2,4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ ions, were simultaneously observed in Er3+/Yb3+:LiLa(MoO4)2 crystals under 976 nm excitation at room temperature. The maximal emission cross-section near 1530 nm for π-polarization was 0.63×10–20 cm2 and the measured lifetime of 4I13/2 was 4.88 ms. The upconversion process was involved in sequential two-phonon processes, either the energy transfer from Yb3+ ions or by the excited state absorption.  相似文献   

5.
yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.  相似文献   

6.
A barium-phosphate glass matrix was co-doped with Sn O and Eu2O3 for investigating on material luminescent properties. Optical absorption and X-ray photoelectron spectroscopy(XPS) were employed in the characterization of tin species. The prevalence of divalent tin was indicated by the XPS data in accord with a conspicuous absorption band detected around 285 nm ascribed to twofold-coordinated Sn centers(isoelectronic with Sn2+). Photoluminescence(PL) excitation spectra obtained by monitoring Eu3+ emission from the 5D0 state revealed a broad excitation band from about 250 to 340 nm, characteristic of donor/acceptor energy transfer. Under excitation of such at 290 nm, the co-doped material exhibited a bright whitish luminescence, and a four-fold enhanced Eu3+ emission relative to a purely Eu-doped reference. Time-resolved PL spectra recorded under the excitation at 290 nm exposed a broad band characteristic of the twofold-coordinated Sn centers and emission bands of Eu3+ ions, which appeared well separated in time in accord with their emission decay dynamics. The data suggested that light absorption took place at the Sn centers(donors) followed by energy transfer to Eu3+ ions(acceptors) which resulted in populating the 5D0 emitting state. Energy transfer pathways likely resulting in the enhanced Eu3+ photoluminescence and the consequential light emission were discussed.  相似文献   

7.
Luminescence of Er^3+ in Oxyfluoride Transparent Glass-Ceramics   总被引:1,自引:0,他引:1  
Erbium doped silicate, germanate, and tellurium-germanate oxyfluoride glasses were prepared in a bulk form. Through appropriate heat treatment of the as-prepared glasses, transparent glass-ceramics (TGCs) were obtained with the formation of β-PbF2∶Er3 nanocrystals in the glass matrix were confirmed by X-ray diffraction. Well-defined diffraction peaks were observed in the samples after heat-treatment. The average crystal diameter of these precipitated crystals from full-width at half-maximum (FWHM) of the diffraction peak was estimated to be between 8 and 13 nm. Optical absorption, photoluminescence, and upconversion luminescence were measured on as-prepared glass and glass-ceramics. Luminescence spectra in the TGC samples revealed well-resolved, sharp stark-splitting peaks, which indicates that a majority of Er3 ions has been incorporated into the crystalline phase of the nanocrystals. The intensity of the visible and near infrared luminescence mostly increases in TSG compared to that in the as-prepared glass. In 1.53 μm absorption and emission bands, the maximum absorption peak is blue-shifted from 1531 to 1507 nm, whereas the maximum emission peak is red-shifted from 1535 to 1543 nm in TGC, as compared with that in glass. The bandwidth at half-maximum (BWHM) of the emission band is significantly broader in TGC than in glass, which is beneficial to the erbium-doped fiber amplifier (EDFA). Upconversion luminescence was measured using 800 nm near-infrared light excitation. Drastically increased upconversion luminescence was observed from the TGC as compared to that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm because of 4S3/2→4I15/2 transition and a weaker red emission centered at 662 nm because of 4F9/2→4I15/2 transition, generally seen from the Er3 doped glasses, two violet emissions centered at 410 nm because of 2H9/2→4I15/2 transition and centered at 379 nm because of 4G11/2→4I15/2 transition were also observed from the TGC. The increased luminescence was attributed to the decreased effective phonon energy and the increased energy transfer between the excited ions when Er3 ions were incorporated into the precipitated β-PbF2 nanocrystals. The results indicated two attractive spectroscopic properties of the Er3 doped TGC samples, compared to glass samples, namely a reduced multiphonon decay rate and a reduced inhomogeneous broadening. In addition, these oxyfluoride TGC materials were robust, easy and flexibile to process, and possible to be fabricated in the fiber form for device applications.  相似文献   

8.
Eu3+ and Ho3+ doped Sr2TiO4 were synthesized by using solid-state reactions. Samples sintered at 1300 oC for 6 h could be indexed to Sr2TiO4 with a single phase. Eu3+ in Sr2TiO4 emitted orange light under the excitation at 365 nm in a broad band which was coupled well with the strongest emission of high pressure mercury vapor lamps. Ho3+ in Sr2TiO4 emitted yellow light under blue excitation from 450 to 460 nm which agreed well with the emission of blue InGaN-based light-emitting diodes. The present results indicated that Sr2TiO4 was a promising host for high pressure mercury vapor lamps or white light-emitting diodes.  相似文献   

9.
Er~(3+)/Yb~(3+) co-doped SrY_2O_4 phosphors with high color purity and brightness were successfully synthesized via a solid-state reaction method.Luminescence spectrum studies showed that the main red peaks and the minor green peaks of upconversion emissions were located at approximately 634–681 nm and 543–570 nm,respectively,corresponding to the transitions of ~4F_(9/2)→~4I_(15/2) and ~4S_(3/2)→~4I_(15/2) of Er~(3+) ions.Under the excitation of 980 and 1550 nm lasers,the spectra of all of the samples exhibited similar peak positions but different intensities.When excited by the 980 nm laser,the intensity ratio of red to green emission increased with increasing Yb~(3+) doping concentration and decreased with increasing excitation power.In the case of 1550 nm excitation,the intensity ratio of red to green emission increased with increasing Yb~(3+) doping concentration and excitation power,thereby,improving the color purity of the red emission.The intensity of red emission was considerably stronger under 1550 nm excitation than that under 980 nm excitation.Therefore,the color of the proposed phosphors could be efficiently tuned by tailoring both the Yb~(3+) doping concentration and excitation power.  相似文献   

10.
Gd2O3:Er nanoparticles were prepared by a simple sol-gel method, The structure properties ot Gd2O3:Er were studied by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The visible up-converted luminescence spectra of Er^3 were investigated under excitation to ^4I9/2 level by 785nm laser. Laser power, Er^3 ion concentration and temperature dependences of the upconverted emissions were investigated to understand the upconversion mechanisms. Excited state absorption and energy transfer process are discussed as the possible mechanisms for the upconversion.  相似文献   

11.
BaMgAl10O17:Eu2+,Yb3+ was investigated as a possible quantum cutting system to enhance solar cells efficiency. Phosphors were synthesized by combustion method and composed of nanorods. Photoluminescence spectra showed that Eu in the sample was reduced to bi-valence while Yb remained trivalence. Through a cooperative energy transfer process, the obtained powders exhibited both blue emission of Eu2+ (around 450 nm) and near infrared emission of Yb3+ (around 1020 nm) under broad band excitation (250-410 nm) originating from 4f→5d transition of Eu2+. Energy transfer phenomenon between the sensitizer Eu2+ and the activator Yb3+ was investigated via the lumines-cent spectra and the decay curves of Eu2+ with different Yb3+ concentrations. Results indicated that energy transfer efficiency from Eu2+ to Yb3+ was not high. The poor efficiency can be explained by the long distance between rare earth ions.  相似文献   

12.
Luminescence enhancement of BaMgSiO4:Eu^2+ by adding borate as flux   总被引:1,自引:0,他引:1  
The luminescence of EU^2+ in BaMgSiO4 with BaB2O4 as flux was studied. The emission spectrum of the phosphor consisted of two bands, peaking at about 398 nm and 515 nm, which were attributed to the emissions from different Eu^2+ sites in the lattice. When the BaB2O4 flux was applied, the intensity of the 398 nm emission was not clearly affected, but the intensity of the 515 nm emission was enhanced by about ten times. Gaussian fitting showed that the emission band at around 515 nm could actually be resolved into two bands with peak wavelengths of 499 nm and 521 nm, respectively. The assignments of the emission bands to the cation sites were carried out according to the values of bond valence. The overlapping of the 398 nm emission band on the excitation band of 515 nm emission implied that energy transfer could occur from the luminescent center related to the 398 nm emission to the center related to the 515 nm emission, and the energy transfer process remarkably enhanced the intensity of the 515 nm emission band. The phosphor had strong excitation at around 350-400 nm and emitted a bright green luminescence. Thus it could have applications as a green component in solid-state lighting devices assembled by near-UV Light Emitting Diodes (LED) combined with tricolor phosphors.  相似文献   

13.
The photoluminescence(PL) properties of Ca4YO(BO3)3 doped with Bi3+,Dy3+,and Pr3+ ions were investigated.These compounds were prepared using a typical solid-state reaction.The excitation and emission spectra were measured using a spectrofluorometer.For Ca4YO(BO3)3:Bi3+,the excitation spectrum showed the bands at about 228,309,and 370 nm which correspond to the 1S0→1P1 transition and the 1S0→3P1 transition of Bi3+ ions.The emission band at 390 nm corresponded to the 3P1→1S0 transition of Bi3+ ions.For Ca4YO(BO3)3:Bi3+,Dy3+,energy transfer occurred from Bi3+ to Dy3+ somewhat.In Ca4YO(BO3)3:Bi3+,Dy3+,Pr3+,the excitation band at 367 nm was enhanced obviously due to the energy migration from Bi3+ to Pr3+,which converted efficiently the emission of semiconductor InGaN based light-emitting diode(LED).Therefore,the emission of Dy3+ ions was enhanced due to the energy migration from the process of Bi3+→Pr3+→Dy3+.It resulted in the good color rendering.  相似文献   

14.
Novel Er3 -doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were found to be Ω2=3.27×10-20 cm2, Ω4=1.15×10-20 cm2, and Ω6=0.38×10-20 cm2. The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log Iup vs log IIR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.  相似文献   

15.
A novel red phosphor Ca2GeO4:Eu3+ was prepared by the traditional solid state reaction. X-ray powder diffraction (XRD) analysis suggested that there was no impurity phase. The study on the diffusion reflection spectra of the undoped and Eu3+ doped Ca2GeO4 phosphors revealed an absorption band superposed of that of the host material and the Eu3+ ions. And the excitation spectrum presented a dominating broad band at 250–300 nm which was attributed to both the host material absorption and the charge transfer band (CTB) of the Eu3+ ions. The investigation on the excitation and diffusion spectra showed that there was an effective energy transfer from the host material to the Eu3+ ions. This was favorable to the red emission of the phosphor. Photoluminescence measurements indicated that the phosphor presents bright red emission at 611 nm under UV excitation. In addition, the Al3+ or Li+ codoping enhanced the red emission from Ca2GeO4:Eu3+ by about 3 and 2 times respectively under UV excitation.  相似文献   

16.
This study presented the luminescence properties of Nd3+/Yb3+/Ho3+ dopant ions inside a host based on Ga2O3-GeO2-Li2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd3+/Ho3+-codoped sample. The incorporation of Yb3+ into Nd3+/Ho3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd3+ to Ho3+ via Yb3+ ion. Here Yb3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb3+. Our results showed that Nd3+/Ho3+/Yb3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.  相似文献   

17.
Nearly monodisperse,regular-shaped and well oil-dispersible tetragonal BaYF5:0.2Yb3+/0.02Er3+ nanocrystals(NCs) were synthesized in water-ethanol-oleic acid-sodium oleate system.The as-obtained NCs exhibited bright upconversion(UC) fluorescence under the 980 nm excitation.Blue(2H9/2-4I15/2),green((2H11/2,4S3/2)-4I15/2) and red(4F9/2-4I15/2) transitions were observed.The results indicated that the relative intensity of green to red increased gradually with increasing power density,which were seldom in the previous work.Therefore,the UC properties and mechanism were studied in detail.  相似文献   

18.
The photoluminescence properties of BiTaO4∶Pr3+ and BiTaO4 at room temperature were studied, and the infrared transmission and diffusion reflection spectra of BiTaO4 were measured. The photoluminescence spectrum of BiTaO4 peaks at about 420, 440 and 465 nm. There has an obvious excitation band from 330 to 370 nm. The photoluminescence spectrum of BiTaO4∶Pr3+ consists of the characteristic emission of Pr3+, and its main peak is at 606 nm from 3P0→3H6 transition of Pr3+. Its excitation spectrum consists of the wide band with maximum at 325 nm, the wide band in the range of 375~430 nm, and the characteristic excitation of Pr3+. The bands at 325 nm and 375~430 nm may be from the absorption of the charge transfer transition of the tantalate group and defect energy levels in its forbidden band, respectively. There is energy transfer from host to Pr3+. Because both the host density and photoluminescence peak intensity of BiTaO4∶Pr3+ are superior to PbWO4, BiTaO4∶Pr3+ may be a potential heavy scintillator.  相似文献   

19.
Nd^3+ doped transparent oxyfiuoride glass ceramic containing β-YF3 nanocrystals was prepared and the upconversion luminescence behaviors of Nd^3+ in the precursor glass and glass ceramic were investigated. Under 796 nm laser excitation, ultraviolet upconversion emissions of Nd^3+ ions at 354 nm (^4D3/2→^4I11/2) and 382 nm (^4D3/2→^4I11/2) were observed at room temperature. Power dependence analysis demonstrated that three-photon upconversion processes populated the ^4D3/2 excited state. In comparison with those of the precursor glass, the ultraviolet emissions were enhanced by a factor of 500 in the glass ceramic, which was attributed to the change in the ligand field of Nd^3+ ions and the decrease in phonon energy because of the partition of Nd^3+ ions into the β-YF3 nanocrystals after crystallization.  相似文献   

20.
Gd_2O_3:Er~(3+) nanophosphors were fabricated by the combustion method in presence of Na_2 ethylene diamine tetra acetic acid(EDTA-Na_2) as fuel at not high temperature(≤350℃) within a very short time of 5 min.The added concentration of Er~(3+)ions in Gd_2O_3 matrix was changed from 0.5 mol% to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd_2O_3:Er3+.The morphology and chemical composition analysis of the Gd_2O_3:Er~(3+) samples are characterized by a field emission scanning electron microscope(FESEM) and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE) and upconversion(UC) at room temperature of the prepared materials with different concentrations of Er~(3+) were investigated.The PL of Gd_2O_3:Er~(3+)nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er~(3+) from ~2P_(3/2) to ~4F_(9/2) are observed,UC luminescent spectra of the Gd_2O_3:Er~(3+)/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd_2O_3:Er~(3+)/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd_2O_3:Er~(3+)was investigated towards development of a nanotemperature sensor in the range of 10-300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号