首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 831 毫秒
1.
The rare earth Pr doped Ca1-x Prx MnO3(x=0,0.06,0.08,0.1,0.12,and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system.The doped samples exhibited single phase composition within the experimental doping range,with condensed bulk microstructure and small porosities.The electrical resistivity was remarkably reduced for doped samples,on account of the enhanced carrier concentration;the absolute value of Seebeck coefficient was deteriorated mainly due to enhanced electron carrier concentration.The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned,with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample,which was very much higher comparing with that of the un-doped sample.The lattice thermal conduction was really confined,leading to distinctly repressed total thermal conductivity.The thermoelectric performance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92 Pr0.08 MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.  相似文献   

2.
Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.  相似文献   

3.
The effect of the Li ion concentration on the phase composition, the electrical conductivity, and the thermoelectric power of the LaLi y Co1–yO3–δ (0 ≤ y ≤ 0.1) oxides synthesized by cocrystallization has been studied. It is found that the region of the perovskite-like solid solution LaLi y Co1–yO3–δ is no higher than y = 0.037. In the temperature range 300–1020 K, lithium alloying leads to an increase in the electrical conductivity and a decrease in the positive thermoelectric power of the single-phase samples compared to LaCoO3–δ. The results are discussed using the density of states model proposed by Senarus Rodriguez and Goodenough for LaCoO3–δ and La1–xSr x CoO3–δ and using the Mott theory of noncrystalline substances.  相似文献   

4.
Structural, magnetic and electrical properties of the La0.7Ca0.3Co1–xMnxO3(x=0, 0.7 and 1) samples prepared by a simple method were systematically studied and it was found that the crystal structure was transformed from rhombohedral for La0.7Ca0.3CoO3(LCCO) and La0.7Ca0.3Co0.3Mn0.7O3(LCCMO) samples to orthorhombic for La0.7Ca0.3MnO3(LCMO) sample. The AC magnetic susceptibility measurements showed that LCCO sample underwent a transition from paramagnetic(PM) to ferromagnetic(FM) phase at Curie temperature, TC~155 K and below Curie temperature, the glassy ferromagnetism nature was observed. In LCCMO sample,clear evidence of spin glass(SG) state was observed at low temperature. PM-FM phase transition at about TC~260 K and long range FM order at low temperatures were observed in LCMO sample. Both the LCCO and LCCMO samples exhibited insulating behavior in the whole range of measuring temperature whereas the LCMO sample underwent a clear metal-insulator(MI) transition at about TMI~263 K, corresponding to Curie temperature. Metallic region of ρ(T) curve of the LCMO sample was fitted to the model of electron-electron and electron-magnon scattering. The charge carrier transport behavior in all the samples was compared based on polaronic models.  相似文献   

5.
Layered cobalt oxides (Ca0.85-xYxOH)1.16CoO2 (x=0,0.05,0.1) were prepared by hydrothermal process and were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).The electrical conductivity and Seebeck coefficient were measured from 323 to 573 K.The XRD and SEM analysis showed that all samples were single phase with plate-like morphology.The substitution of trivalent Y for divalent Ca had a remarkable effect on the enhancement of electrical properties.The maximum PF value,9.17×10-5 W/(m·K2),was obtained for (Ca0.75Y0.1OH)1.16CoO2 at 573 K,indicating that they are promising thermoelectric materials for middle-temperature usage.  相似文献   

6.
Pr(Ga1-xCox)0.9Mg0.1O3-δ (x=0, 0.1, 0.2, 0.3) was synthesized using solid-state reaction technique to study the effects of Co doping on their structure and properties. Room and high temperature XRD, DSC and electrical conductivity measurement with D.C. four-probe technique were adopted in the study. The results indicated its orthorhombic-distorted perovskite structure at room temperature. PrGa0.9Mg0.1O3-δ maintained its orthorhombic-distorted structure between 298 and 1173 K. For Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ, such structure existed below 873 K. From 873 to 1173 K, it possessed tetragonal structure. The transformation from orthorhombic to tetragonal structure at 873 K was of second order. The intrinsic volume thermal expansion of tetragonal structured Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ Was about 50% higher than those of PrGa0.9Mg0.1O3-δ. The electrical conductivity increased with Co content. The activation energies of conduction for Pr(Ga1-xCox)0.9Mg0.1O3-δ are in range from 0.197 to 0.246 eV, much lower than 1.543 eV for PrGaO3.  相似文献   

7.
The layered material of Ce-doped LiNi1/3Mn1/3Co1/3O2 with α-NaFeO2 was synthesized by a co-precipitation method. X-ray diffraction (XRD) showed that Ce-doped LiNi1/3Mn1/3Co1/3O2 had the same layered structure as the undoped LiNi1/3Mn1/3Co1/3O2. The scanning electron microscopy (SEM) images exhibited that the particle size of Ce-doped LiNi1/3Mn1/3Co1/3O2 was smaller than that of the undoped LiNi1/3Mn1/3Co1/3O2. The Ce-doped LiNi1/3Mn1/3Co1/3O2 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram (CV), and electrochemical impedance spectra (EIS). The optimal doping content of Ce was x=0.02 in the LiNi1/3-xMn1/3Co1/3CexO2 samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through Ce-doping. The improved electrochemical performances of the Ce-doped LiNi1/3Mn1/3Co1/3O2 cathode materials were attributed to the addition of Ce4+ ion by stabilizing the layer structure.  相似文献   

8.
Gd~(3+)-,Pr~(3+)-or Sm~(3+)-doped Co-Zn(Co_(0.5)Zn_(0.5)Fe_2 O_4) magnetic ferrites(i.e.,Co_(0.5)Zn_(0.5)Gd_(0.1)Fe_(1.9)O_4,Co_(0.5)Zn_(0.5)Pr_(0.1)Fe_(1.9)O_4 and Co_(0.5)Zn_(0.5)Sm_(0.1)Fe_(1.9)O_4) were prepared using a facile sol-gel approach,and the structure,surface morphology and chemical composition of the products were studied by means of scanning electron microscopy(SEM),energy dispersive X-ray analysis(EDX),X-ray diffraction(XRD),UVvisible diffuse reflectance spectroscopy(DRS),photoluminescence(PL) spectroscopy,Fourier transform infrared spectroscopy(FT-IR) and vibrating sample magnetometer(VSM) spectroscopy.XRD patterns show the Co-Zn product is composed of cubic spinel phases with few impurities or secondary phases,and the average crystallite sizes of the samples are determined to be approximately~51—80,~99—181,~68—103 and~83—133 nm.Also the coercivity and remnant and saturation magnetizations,evaluated by vibrating sample magnetometer(VSM),are found to increase linearly with the incorporation of Gd3+,Pr3+and Sm3+in the product formulation.The CO_(1-x)Zn_xFe_(2-y)R_yO_4 photocatalyst sample is found to display a red shift in its absorption,and exhibits outstanding photocatalytic effects in the degradation of MO under ultraviolet(UV) light.This is attributed to the reduction of the band gap of cobalt-zinc ferrite due to the presence of rare earth ions.Further in vitro evaluations of the cytotoxic effects of the synthesized nanoparticles were performed on a HeLa cell line.  相似文献   

9.
The La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-δ(LSCCoF)and La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)powders were synthesized by glycine-nitrate combustion process and conventional solid-state reaction method,respectively.The LSCCoF-LSGM composite cathode material was successfully elaborated and deposited on dense pellets of the LSGM electrolyte by means of slurry spin-crating process.The cathode films with the best surface morphology and microstructure were obtained when the operating parameters fixed as follows:the content of ethyl cellulose which acted as pore former and binder is 10 wt.%,the content of terpineol which acted as modifier is 5 wt.%,the speed of rotation rate is3200 r/min and the best post-deposition sintering temperature is 1000 ℃.  相似文献   

10.
In order to develop novel cathode materials with high performance for intermediate temperature SOFC(IT-SOFC),Ca and Mn doped rare earth oxides La1-xCaxFe0.9Mn0.1O3-δ(x=0.1,0.3 and 0.5,denoted as LCFM9191,LCFM7391 and LCFM5591) were synthesized by solid state reaction(SSR) method.The formation process,phase structure and microstructure of the synthesized samples were characterized using thermogravimetry/differential scanning calorimetry(TG/DSC),X-ray diffraction(XRD) and scanning electron microscopy(SEM).The thermal expansion coefficients(TEC) of the samples were analyzed at 100-900 oC by thermal dilatometry.The electrical conductivities of the samples were measured with direct current(DC) four-terminal method from 300 to 850 oC.The results indicated that the samples(x=0.1 and 0.3) exhibited a single phase with orthorhombic and cubic perovskite structure,respectively after being sintered at 1200 oC for 3 h.The electrical conductivity of the samples increased with temperature up to a maximum value,and then decreased.The small polaron hopping was regarded as the conducting mechanism for synthesized samples at T≤600 oC.The negative temperature dependence occurring at higher temperature was due to the creation of oxygen vacancies for charge balance.LCFM7391 had higher mixed conductivity(>100 S/cm) at intermediate temperature and could meet the demand of cathode material for IT-SOFC.In addition,the average TECs of LCFM9191 and LCFM7391 were 11.9×10-6 and 13.1×10-6 K-1,respectively,which had good thermal match to the common electrolytes.  相似文献   

11.
The electrophisical properties (temperature dependence of electrical resistance, activation energy, thermoelectric power, current-voltage characteristics) of highly resistive thick films containing powders of solid solution Sn0.9Sb0.1O2, amorphous glass, and lanthanum hexaboride have been studied. The ohmic contact was shown to form at the LaB6-glass interface. Due to the contact potential difference the electrons are injected from lanthanum hexaboride particles into the glass interlayers. These electrons are assumed to increase the carrier concentration taking part in the electrical conduction of the film. Institute for Problems of Materials Science, Ukraine National Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 7–8(402), pp. 108–112, July–August, 1998.  相似文献   

12.
Ce0.9?x Gd0.1Er x O1.9?x/2 (0 ≤ x ≤ 0.1) (EGDC) powders were successfully synthesized with a fast and facile cellulose-templating method for the first time and characterized by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The samples were calcined at a relatively low calcination temperature of 773 K (500 °C). The sintering behavior of the calcined EGDC powders was also investigated at 1673 K (1400 °C) for 6 hours. Calcined Ce0.9?x Gd0.1Er x O1.9?x/2 (0 ≤ x ≤ 0.1) powders and sintered Ce0.9?x Gd0.1Er x O1.9?x/2 (0 ≤ x ≤ 0.1) pellets crystallized in the cubic fluorite structure. It was found that the relative densities of the sintered EGDC pellets were over 95 pct for all the Er contents studied. Moreover, the effect of Er content on the ionic conductivity of the gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.90) was investigated. The highest ionic conductivity value was found to be 3.57 × 10?2 S cm?1 at 1073 K (800 °C) for the sintered Ce0.82Gd0.1Er0.08O1.91 at 1673 K (1400 °C) for 6 hours.  相似文献   

13.
The substitution of elements has attracted great interest to enhance the electrochemical properties of sodium-ion batteries(SIBs).Herein,the P2—Na_(0.67)Co_(0.35)Ti_(0.20)Mn_(0.45-x)La_xO_2 electrode samples were prepared via a solid-state route.The effect of La~(3+)substitution was researched as high-rate SIBs cathode.The Na_(0.67)Co_(0.35)Ti_(0.20)Mn_(0.44)La_(0.01)O_2 exhibits a superior initial specific capacity of 162.7 and 125.9 mA h/g after50 cycles at 0.1 C rate,and the initial specific discharge capacity of 115.2 mA h/g with 60.6% capacity retention after 100 cycles at 1 C In addition,the Na_(0.67)Co_(0.35)Ti_(0.20)Mn_(0.44)La_(0.01)O_2 sample shows an excellent rate capacity of 91.9 and 60.4 mA·h/g with 46.9% and 50.9% capacity retentions even at 8 C and 10 C rate after100 cycles,respectively.The promising La-substituted P2-type Na_(0.67)Co_(0.35)Ti_(0.20)Mn_(0.45-x)La_xO_2 material provides a new strategy for designing high-rate performance of SIBs.  相似文献   

14.
A series of Co3O4 spinel catalysts modified by Sm were prepared by co-precipitation method and tested for CH4 and CO oxidation.The addition of a small amount of Sm into Co3O4 led to an improvement in the catalytic activity for both reactions.Co0.98Sm0.02 and Co0.95Sm0.05,the two samples with Co/Sm molar ratio of 0.98/0.02 and 0.95/0.05 in sequence,showed the similar and the highest activity for CH4 oxidation,with CH4 complete conversion at 450 oC.In contrast,Co0.90Sm0.10 was the most active sample for CO oxidation,with CO complete conversion at 120 oC.The catalysts were characterized by techniques of N2 adsortion-desorption with Brunauer-Emmett-Teller technique(N2-BET),X-ray powder diffraction(XRD),thermal gravity analysis-differential scanning calorimetry(TGA-DSC),H2 temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy analysis(XPS).Compared with pure Co3O4,for Co1–x Smx catalysts with 0.02≤x≤0.10,the addition of a small amount of Sm resulted in the formation of spinel Co3O4 and amorphous SmCoO3,hence increasing the number of Co3+ and the active surface oxygen species,which was responsible for the improvement of the activity.Co0.95Sm0.05 catalyst showed not only high thermal stability and activity but also good reaction durability in the presence of 5% water vapor for CH4 oxidation.  相似文献   

15.
Zintl phase compounds AM2Sb2(A=Ca,Sr,Ba,Eu,Yb;M=Zn,Cd)is a new class of promising thermoelectrics owing to their intrinsic features in electronic and crystal structure,such as a small or even disappeared band-gap,large density-of-states at the Fermi level,covalently bonded network of M-Sb,as well as the layered stacking by cations A2+and anionic slabs(M2Sb2)2–.In addition,the rich solid-state chemistry of Zintl phase allows structural modification and chemical substitution to adjust the fundamental transport parameters(carrier concentration,mobility,effective mass,electronic and lattice thermal conductivity)for improving the thermoelectric performance.In the present review,the recent advances in synthesis and thermoelectric characterization of title compounds AM2Sb2were presented,and the effects of alloying or substitution for sites A,M and Sb on the electrical and thermal transport were emphasized.The structural disorder yielded by the incorporation of multiple ions significantly increased the thermoelectric figure of merit mainly resulted from the reduction of thermal conductivity without disrupting the carrier transport region in substance.Therefore,alloying or substitution has been a feasible and common route utilized to enhance thermoelectric properties in these Zintl phase compounds,especially for YbZn0.4Cd1.6Sb2(ZT700 K=1.26),EuZn1.8Cd0.2Sb2(ZT650 K=1.06),and YbCd1.85Mn0.15Sb2(ZT650 K=1.14).  相似文献   

16.
In this study,Gd and Ca co-doped ceria electrolytes with the compositions of Ce_(0.8)Gd_(0.2-x)Ca_xO_(2-δ)(x=0-0.08) were prepared by a novel gel-casting method.The effects of the addition of Ca on the phase compositions,sintering behavio r,and electrical prope rties of samples were investigated.According to the scanning electron microscope results and relative density measurement results,it is found that the addition of particular quantity of CaO can promote the sintering densification with a uniform grain growth.When the sintering temperature is 1400℃,the sample with 6 mol% addition of Ca has the highest relative density,which reaches 98.5% of the theoretical density.The electrical properties testing results confirm that the electrical conductivity of the samples can be improved significantly by doping appropriate CaO content.The maximum conductivity of 0.082 S/cm can be obtained at 800℃ in the Ce_(0.8)Gd_(0.12)-Ca_(0.06)O_(1.87) sample.It suggests that CaO can be used as an effective sintering aid and a codopant on the optimization of electrical properties for ceria-based electrolytes.  相似文献   

17.
《粉末冶金学》2013,56(2):174-176
Abstract

In this research, synthesis of Co3W–Cu composite nanopowders based on Co3W intermetallic compound by mechanical milling and hydrogen reduction process was investigated. Powder mixture of Co3O4, WC and CuO with Co50W40Cu10 stoichiometry was first milled by high energy planetary ball mill and then reduced in a hydrogen reduction system. Crystallite structure of milled mixture and reduced powders was determined by X-ray diffraction. Particles size, morphology and cross-section of reduced samples were studied by SEM, TEM and SEM back scattered electron microscopy. Optimum condition of reduction under hydrogen atmosphere was found at 900°C. Particles have Cu coring structure surrounded with Co3W intermetallic compound. Mean particle size was observed less than 50 nm with six fold hexagon morphology.  相似文献   

18.
The CoSb3 and Y0.18Co4Sb12 compounds were synthesized by a metallurgical route. Their bulk materials were prepared by the hot-pressed process under vacuum. Thermoelectric properties of the samples were measured by the thermoelectric measurement system and the laser flash diffusivity apparatus. The carrier type conversion of hot-pressed CoSb3 was found at about 530 K, while the conversion was missed for the Y0.18Co4Sb12 sample. Electrical conductivity of the Y0.18Co4Sb12 sample increased due to the increase of carrier concentration, and its thermal conductivity decreased due to the enhancement of phonon scattering. The value of ZT, figure of merit, for the Y0.18Co4Sb12 sample was obviously enhanced due to positive contribution of the electrical conductivity and the thermal conductivity.  相似文献   

19.
Herein, we demonstrate the synthesis of W and Ba co-doped La_2Mo_2O_9(LBMWO) nanocrystalline powder by a sol-gel process. In all the compositions have general formulae La_(1.9)Ba_(0.1)Mo_(2-x)W_xO_(8.95)(x = 0-0.40). The crystal structure, microstructure and conductivity of LBMWO were characterized by X-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. In addition, the thermal and decomposition properties of the LBMWO gel were analyzed by differential scanning calorimetry-thermogravimetric. The results reveal that all LBMWO powders calcined at 700 ℃ have a cubic structure;the average crystallite size is about 48 nm. The unit cell parameter of LBMWO powders increases with increase in W content. The as-synthesized nanocrystalline LBMWO samples exhibit excellent sinterability and a relatively lower sintering temperature of 900 ℃. A high relative density of -96% is achieved after sintering at 900 ℃ which is in good agreeme nt with the re sults of the SEM. Moreover, W and Ba codoping suppresses the phase transition and effectively stabilizes the β-phase at low temperature. At the same time,La_(1.9)Ba_(0.1)Mo_(1.85)W_(0.15)O_(8.95) exhibits high ionic conductivity, 3.07 x 10~(-2) S/cm at 800 ℃. It is therefore concluded that co-doping can improve the properties of La_2MO_2O_9 electrolytes.  相似文献   

20.
Research on bismuthlayer structuredferroelectricceramics as piezoelectric material with high Curie tem-perature ,strong anisotropic characters ,lowdielectricdissipationfactor and lowaging rate has attracted in-creasing interest[1,2].It can be used to manu…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号