首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, optimal power allocation and relay selection strategies in energy harvesting cooperative wireless networks are studied. In particular, signal‐to‐noise ratio (SNR)‐maximizing based power allocation and relay selection without and with energy cooperation—via wireless energy transfer—are considered. Moreover, total relay power minimization subject to target end‐to‐end SNR is investigated. The different optimal strategies are formulated as optimization problems, which are non‐convex. Thus, intelligent transformations are applied to transform non‐convex problems into convex ones, and polynomial‐time solution procedures are proposed. Simulation results illustrate that power allocation strategies achieve higher end‐to‐end SNR than relay selection ones. Finally, energy cooperation is shown to be effective in improving end‐to‐end SNR, while total relay power minimization balances end‐to‐end SNR, transmit power consumption, and harvested energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
为了提高双向中继系统总速率,针对双向放大转发中继系统提出了一种运用信噪比平衡技术进行各节点间功率分配的最优功率分配方案,并推导得出了最优功率分配方案表达式。理论分析和仿真结果表明,所提出的最优功率分配方案有效提高了系统可达总速率,改善了系统性能。  相似文献   

3.
In this paper, symbol-error-rate (SER) performance analysis and optimum power allocation are provided for uncoded cooperative communications in wireless networks with either decode-and-forward (DF) or amplify-and-forward (AF) cooperation protocol, in which source and relay send information to destination through orthogonal channels. In case of the DF cooperation systems, closed-form SER formulation is provided for uncoded cooperation systems with PSK and QAM signals. Moreover, an SER upper bound as well as an approximation are established to show the asymptotic performance of the DF cooperation systems, where the SER approximation is asymptotically tight at high signal-to-noise ratio (SNR). Based on the asymptotically tight SER approximation, an optimum power allocation is determined for the DF cooperation systems. In case of the AF cooperation systems, we obtain at first a simple closed-form moment generating function (MGF) expression for the harmonic mean to avoid the hypergeometric functions as commonly used in the literature. By taking advantage of the simple MGF expression, we obtain a closed-form SER performance analysis for the AF cooperation systems with PSK and QAM signals. Moreover, an SER approximation is also established which is asymptotically tight at high SNR. Based on the asymptotically tight SER approximation, an optimum power allocation is determined for the AF cooperation systems. In both the DF and AF cooperation systems, it turns out that an equal power strategy is good, but in general not optimum in cooperative communications. The optimum power allocation depends on the channel link quality. An interesting result is that in case that all channel links are available, the optimum power allocation does not depend on the direct link between source and destination, it depends only on the channel links related to the relay. Finally, we compare the performance of the cooperation systems with either DF or AF protocol. It is shown that the performance of a systems with the DF cooperation protocol is better than that with the AF protocol. However, the performance gain varies with different modulation types and channel conditions, and the gain is limited. For example, in case of BPSK modulation, the performance gain cannot be larger than 2.4 dB; and for QPSK modulation, it cannot be larger than 1.2 dB. Extensive simulation results are provided to validate the theoretical analysis.  相似文献   

4.
Half‐duplex amplify‐and‐forward (AF) transmissions may result in insufficient use of degrees of freedom if they always use the cooperative mode regardless of the fading states. In this paper, we investigate the conditions under which cooperation offers better performance and the corresponding optimal power allocation during cooperation. Specifically, we first derive an expression of ergodic capacity and its upper bound for an AF cooperative communication system with n relay nodes. Secondly, we propose a novel quasi‐optimal power allocation (QOPA) scheme to maximize the upper bound of the derived ergodic capacity. For the QOPA scheme, the cooperative mode is only adopted when the channel gain of source‐to‐destination is worse than that of relay‐to‐destination. Moreover, we analyze the performance of the system with QOPA scheme when the relay moves, which is based on the random direction model, in a single‐relay wireless network. For a multi‐relay AF network, we compare the ergodic capacity and symbol error rate, corresponding to the proposed QOPA and equal power allocation schemes, respectively. Extensive simulations were conducted to validate analytical results, showing that both ergodic capacity and symbol error rate of the system with QOPA scheme are better than those of the system with equal power allocation scheme in a multi‐relay AF network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We are concerned with transmit power optimization in a wireless relay network with various cooperation protocols. With statistical channel knowledge (in the form of knowledge of the fading distribution and the path loss information across all the nodes) at the transmitters and perfect channel state information at the receivers, we derive the optimal power allocation that minimizes high signal-to-noise ratio (SNR) approximations of the outage probability of the mutual information (MI) with amplify-and-forward (AF), decode-and-forward (DF) and distributed space-time coded (DSTC) relaying protocols operating over Rayleigh fading channels. We demonstrate that the high SNR approximation-based outage probability expressions are convex functions of the transmit power vector, and the nature of the optimal power allocation depends on whether or not a direct link between the source and the destination exists. Interestingly, for AF and DF protocols, this allocation depends only on the ratio of mean channel power gains (i.e., the ratio of the source-relay gain to the relay-destination gain), whereas with a DSTC protocol this allocation also depends on the transmission rate when a direct link exists. In addition to the immediate benefits of improved outage behavior, our results show that optimal power allocation brings impressive coding gains over equal power allocation. Furthermore, our analysis reveals that the coding gain gap between the AF and DF protocols can also be reduced by the optimal power allocation  相似文献   

6.
The performance of wireless communication systems is improved over flat fading channel by using Alamouti coding scheme, which provides the quality of diversity gain. In this paper, performance analysis of symbol error rate (SER) and particle swarm optimization (PSO)–based power allocation (PA) for Alamouti amplify and forward (AF) relaying protocol using maximum ratio combining (MRC) technique is presented. Analytical expression of SER upper bound and SER approximation is derived for Alamouti AF relaying protocol with quadrature phase shift keying (QPSK) modulation over Rayleigh fading channel and Rician fading channel. In addition, PSO‐based optimum PA factor is calculated on the basis of the minimum SER of proposed method. PSO‐based optimum PA gives 0.5 dB of improved signal‐to‐noise ratio (SNR) compared with the equal power allocation (EPA). The theoretical approximate SER result is compared with the simulated SER. The proposed protocol provides full diversity gain and reduces SER compared with the existing AF and decode and forward (DF) relaying protocols over Rayleigh fading channel and Rician fading channel.  相似文献   

7.
In wireless communications, power allocation plays a paramount role in sustainable network lifetime prolongation with quality-of-service and network interference reduction. This paper investigates a distributed power allocation problem in wireless parallel amplify-and-forward (AF) relay transmissions. Particularly, the objective is set to minimize the total transmit power while guaranteeing the signal-to-noise ratio (SNR) requirement at the destination node. The distributed SNR-based power allocation problem is formulated and modeled as a Cournot game. Moreover, a distributed SNR-based power allocation algorithm is proposed to solve the Cournot game. The proposed distributed SNR-based power allocation algorithm is proved to converge to a unique equilibrium. To evaluate the distributed method, a centralized optimal SNR-based power allocation algorithm is also proposed. Numerical results show that the proposed distributed SNR-based power allocation algorithm can achieve comparable performance to the centralized optimal SNR-based power allocation algorithm.  相似文献   

8.
An asymptotic average bit error probability (ABEP) analysis is presented for amplify-and-forward (AF) cooperation with multi-branch dual-hop relays in independent Nakagami-m fading channels. The approximate probability density function (PDF) of the instantaneous dual-hop link power at high SNR region is derived, and indicates that the relay link is dominated by the more severely faded hop. Simple and general asymptotic ABEP expressions are presented for all-participate AF (AP-AF) and selective AF (S-AF) cooperation employing general Gray bitmapped constellation. The results are quite simple and general for arbitrary value of severity parameter m ges 0.5. It is shown that S-AF does not necessarily outperform AP-AF in terms of coding gain under conventional equal power allocation as in the Rayleigh fading environment. Whether or not S-AF outperforms AP-AF depends only upon the fading severity parameters and is irrelevant to the channel gains. Simulation results verify the tightness of the presented analysis at high SNR region.  相似文献   

9.
于迎新  王钢 《电子与信息学报》2012,34(12):2830-2836
为了提高协作分集系统的信道容量,该文在多中继节点协作背景下提出了基于注水算法的中继节点功率分配方案。首先,对空时矩阵的列序号提出了一种新的映射方案,该方案能够提升中继节点发射信号间的正交性。对于采用线性正交解码算法的GABBA码,列序号重新排布后能够降低误码率。然后,通过对接收信噪比与中继节点发射功率的分析,针对信道容量最大化问题提出了一种应用注水算法的两步求解方案。该文对瑞利平坦慢衰落信道下采用GABBA码的协作分集系统进行仿真,仿真结果表明,与中继节点发射功率均分方案相比,该文提出的功率分配方案能够提升系统抗误码性能,达到满分集增益NtNr。该文提出的方案在不同的仿真条件下对信道容量均有提升,并且信道容量与min{NtNr}log2M成正比。  相似文献   

10.
Cooperative Distributed MIMO Channels in Wireless Sensor Networks   总被引:7,自引:0,他引:7  
The large number of network nodes and the energy constraints make Wireless Sensor Networks (WSN) one of the most important application fields for Cooperative Diversity. Node cooperation increases the spatial diversity of wireless channels and, thus, reduces the transmitted power. In this paper, we propose a multi-hop WSN with nodes grouped in cooperative clusters that exploits transmit and receive cooperation among cluster nodes. Multi-hop transmission is carried out by concatenating single cluster-to-cluster hops, where every cluster-to-cluster link is defined as a cooperative distributed multiple-input-multiple-output (MIMO) channel. Transmit diversity is exploited through a time-division, decoder-and-forward, relaying scheme based upon two time slots: the Intracluster Slot, used for data sharing within the cluster, and the Intercluster Slot, used for transmission between clusters. At the receiver side, a distributed reception protocol is devised based upon a Selection Diversity algorithm. The proposed multi-hop cooperative WSN is optimally designed for minimum end-to-end outage probability by deriving the optimum time and power allocated on the intracluster and intercluster slots of every single hop, given a per-link energy constraint. A simplified suboptimum resource allocation is also proposed, which performs close to the optimal policy. Results show that the proposed scheme achieves diversity equal to the equivalent MIMO system and significantly reduces energy consumption with respect to. the non-cooperative channel  相似文献   

11.
梁文文  田华  徐友云  许魁 《通信技术》2011,(10):38-40,43
采用机会,给出了在译码转发方式下基于网络编码的双向多中继系统平均中断概率表达式,通过Monte Carlo仿真,验证了理论分析的正确性。随后分析了功率分配因子与信噪比和中继节点个数在不同情形下的系统中断性能,指出了功率分配因子与系统总功率和中继节点的内在关系。仿真结果表明,在双向多中继系统中采用网络编码和机会中继时,功率分配因子取值在0.6或0.6附近时能够获得最优的系统中断性能。  相似文献   

12.
In this paper, we analyze the performance of multi-hop multi-branch amplify-and-forward (AF) networks over generalized fading channels. Using the moment generating function (MGF)-based approach, we develop general expressions for the outage probability and symbol-error rate (SER) performance of the system with maximal ratio combining (MRC) receiver. The MGF-based approach relies on numerical integration. To gain insights into system performance, we therefore investigate the asymptotic outage and SER performance of the system with MRC and selection combining (SC) receiver at the destination. In particular, we develop the asymptotic statistics of the end-to-end signal-to-noise ratio (SNR) of an AF multi-hop link. We further derive the cumulative density function of the sum of the individual end-to-end SNRs, received from different diversity paths for MRC receiver. We also study the power allocation problem in a multi-hop multi-branch system with MRC receiver. In generalized Gamma fading environments, we seek to find the power allocation strategy that maximizes the SNR at the destination subject to a total power constraint. By means of simulations, we validate our theoretical developments and verify the efficiency of our proposed power allocation in improving the received SNR compared to a generic cooperative system with no power allocation. We also conclude that our asymptotic expressions for the outage probability and SER match the simulations very well in medium-to-high-SNR regime.  相似文献   

13.
This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward(DF)relay networks over Rayleigh fading channels,assuming that multiple antennas are available at the relay node.According to whether instantaneous signal-to-noise ratio(SNR)or average SNR can be utilized for relay selection,two opportunistic relay schemes,opportunistic multi-antenna relay selection(OMRS)and average best relay selection(ABRS)are proposed.The performances of both two schemes are evaluated by means of theoretical analysis and simulation.It is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and closely approaches the beamforming(BF)scheme known as theoretical outage-optimal.Compared with previous single-antenna opportunistic relaying(OR)scheme,OMRS brings remarkable performance improvement,which is obtained from maximum ratio combining(MRC)and beamforming techniques.It is also shown that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.  相似文献   

14.
Power allocation is a key technique to exploit the benefits of cooperative relaying. In this paper, we investigate the effect of shadowing on the power allocation of amplify-and-forward cooperative relaying systems. Considering the joint effects of path loss, correlated shadowing and flat Rayleigh fading, the approximate outage probability at high signal-to-noise ratio (SNR) is first derived. Then we solve the power allocation problem by minimizing the approximate outage probability subject to a total power constraint. It is shown by the analytical results that the correlation coefficients and the standard deviations of shadowing have significant impacts on the power allocation. The simulation results show that the proposed power allocation scheme yields about 2 dB SNR gain compared to the equal power allocation in the high SNR regime.  相似文献   

15.
By introducing orthogonal space-time coding (STC) scheme in wireless cooperative relay network, two distributed differential STC (DSTC) schemes based on the amplify-and-forward (AF) and decode-and- forward (DF) methods are, respectively, developed. The scheme performance is investigated in symmetric and asymmetric wireless relay networks. The presented schemes require no channel information at both relay terminals and destination terminal, and have linear decoding complexity when compared with the existing scheme. Moreover, they are suitable for the application of different constellation modulations and DSTC schemes, and thus provide more freedoms of design. Besides, the power allocations between source and relay terminals are jointly optimized to minimize the system pairwise error probability for symmetric and asymmetric networks, and two practical methods are presented to solve the complicated optimized problem from asymmetric network. Simulation results show that the scheme with DF method has better performance than that with AF method due to no amplification of noise power, but the performance superiority will decrease at high SNR due to the error propagation of decoding at the relays. Furthermore, the distributed DSTC schemes with optimal power allocation have better performance than those with conventional fixed power allocation.  相似文献   

16.
为了充分实现中继协作,降低多中继协作通信系统功率分配优化问题的计算复杂度,提出了基于萤火虫算法的多中继功率分配方案。在一定的总功率和节点功率约束下,以最大化平均信噪比为优化目标函数,建立了多中继协作系统的功率分配最优化模型。选取该目标函数作为萤火虫的适应度函数,用向量表示萤火虫的状态,该向量的维数为待分配源节点和中继节点的个数,通过萤火虫聚集得到种群中最好的萤火虫,即可获得渐进最优功率分配。仿真结果表明,与平均功率分配相比,基于萤火虫算法的功率分配方案能降低2.44%~6.17%的比特差错率,提高了系统性能。  相似文献   

17.
Cooperative communication based on relaying nodes has been considered as a promising technique to increase the physical layer security (PLS) performance in wireless communications. In this paper, an optimal power allocation (OPA) scheme based on Nelder‐Mead (NM) algorithm is proposed for improving the secrecy rate of amplify‐and‐forward (AF) cooperative relay networks employing cooperative jamming (CJ) scheme. The proposed hybrid jamming scheme allows the source and selected relay to transmit the jamming signal along with the information to confound the eavesdropper. The path selection probability of ant colony optimization (ACO) algorithm is used for selecting the relay for transmission. The performance based on secrecy rate is evaluated for “n” trusted relays distributed dispersedly between the source and destination. Gradient‐based optimization and three‐dimensional exhaustive search methods are used as benchmark schemes for comparison of the proposed power optimization algorithm. The secrecy performance is also compared with conventional AF scheme and CJ scheme without power optimization (EPA). The impact of single and multiple relays on secrecy performance is also evaluated. Numerical results reveal that, compared with the gradient method and exhaustive search algorithm, the proposed power allocation strategy achieves optimal performance. Also, the derived OPA results show a significantly higher secrecy rate than the EPA strategy for both CJ and AF schemes.  相似文献   

18.
赵耀环  谢梦非  尚勇 《电子学报》2015,43(4):791-794
本文提出了一种以协同干扰为基础,结合了最优中继选择和功率分配的物理层安全方案.该方案针对分布式天线的场景,从中间节点中选择一个最佳的节点作为中继,剩余的其他节点作为协同干扰节点.中继节点使用放大转发策略.本文同时提出了协同干扰节点的波束成形算法.另外,我们还推导出了中继节点和协同干扰节点之间的功率分配的闭式解.最后,本文还给出了相关的仿真结果,证实了新提出的方案比传统方案能获得更高的安全容量.  相似文献   

19.
The interference channel is an essential model in both wireline and wireless communication systems. This article addresses transmit power allocation in interference channels with total transmit power constraint. The optimum power allocation maximizing the sum rate in two user interference channels can be derived analytically. However, the non-convexity of the optimization problem makes it prohibitively complex to obtain the optimum solution either analytically or numerically in general K user scenarios. After reviewing several conventional suboptimum power allocation schemes including equal power allocation, greedy power allocation and waterfilling power allocation, an iterative waterfilling algorithm is proposed and discussed. The performance of various power allocation schemes is evaluated through simulations, which suggests that the proposed iterative waterfilling outperforms other suboptimum power allocation schemes in certain scenarios.  相似文献   

20.
对协作分集进行简单介绍,提出了将协作分集应用到散射通信中的方案,分析了协作分集在散射通信中的应用可行性。并对其中的放大转发和译码转发在只有一个中继节点的情况下进行仿真,仿真结果证明在大信噪比时译码转发的性能优于放大转发。且协作分集应用到散射通信中在相同的信噪比下,误码率更低,提高了系统性能。利用协作分集技术对散射通信进行组网,较直接组网设备复杂度低,易于实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号