首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the heat capacity and electrical resistivity of POCO AXM-5Q1 graphite in the temperature range 1500–3000 K by a subsecond-duration pulse-heating technique are described. The results for heat capacity may be represented by the relation $$C_{{\text{p }}} = 19.438 + 3.6215 \times {\text{10}}^{{\text{ - 3}}} {\text{ }}T - 4.4426 \times {\text{10}}^{{\text{ - 7}}} {\text{ }}T^2$$ where C p is in J · mol?1 · K?1 and T is in K. The results for electrical resistivity vary with the density (d) of the specimen material and, therefore, are represented by the following relations: for d=1.709, $$\rho = 1084.6 - 1.9940 \times {\text{10}}^{{\text{ - 1}}} {\text{ }}T + 1.6760 \times {\text{10}}^{{\text{ - 4 }}} T^{2{\text{ }}} - 2.0310 \times {\text{10}}^{{\text{ - 8 }}} T^3$$ and for d= 1.744, $$\rho = 943.1 - 1.3836 \times {\text{10}}^{{\text{ - 1}}} {\text{ }}T + 1.3776 \times {\text{10}}^{{\text{ - 4 }}} T^{2{\text{ }}} - 2.0310 \times {\text{10}}^{{\text{ - 8 }}} T^3$$ where ρ is in μΩ · cm, T is in K, and d (at 20°C) is in g · cm ?3. The maximum uncertainties in the measured properties are estimated to be 3% for heat capacity and 1 % for electrical resistivity.  相似文献   

2.
Measurements are described of specific heat capacity and electrical resistivity of a 2-2-3 T-50 carbon-carbon composite in the temperature range 1500–3000 K by a subsecond duration pulse heating technique. The results are represented by the relations 1 $$C\rho = 1.691 + 2.598{\text{x10}}^{{\text{ - 4}}} T - 2.691{\text{x10}}^{{\text{ - 8}}} T^2 $$ 2 $$\rho = 733.0 + 6.594{\text{x10}}^{{\text{ - 2}}} T$$ where c p is in J · g?1 · K?1, ρ is in ΜΩ · cm, and T is in K. Inaccuracy of specific heat capacity and electrical resistivity measurements is estimated to be not more than ±3%.  相似文献   

3.
The ductile-brittle transition of an ethylene-hexene copolymer was measured from 80 to 24° C. The basic curves of stress against time to failure could all be unified in terms of a single equation based on normalizing the stress relative to the transition stress between the ductile and brittle regions and using a single thermal activation parameter. This unity is based on the observations which show that the ductile and brittle failure processes are both associated with a shear process. The unifying equation is $$\left( {\frac{\sigma }{{\sigma _{\text{c}} }}} \right)^n = \left( {\frac{{t_{\text{R}} }}{{t_{\text{f}} }}} \right){\text{ exp }}\left[ {{\text{85 500/}}R\left( {\frac{1}{T} - \frac{1}{{T_{\text{R}} }}} \right)} \right]$$ where σ c is the minimum stress for ductile failure at an arbitrary temperature, T R; t R is the time to failure at an arbitrary reference temperature T R; n equals 34 and 3.3 for the ductile and brittle regions, respectively and R is in J mol?1 K?1.  相似文献   

4.
Samples of SrAl2O4 and SrAl2O4:Cr3+ were prepared by mixing the powder materials SrCO3, Al2O3, and Cr2O3. The crystal structures of the undoped and doped samples were analyzed by X-ray diffraction (XRD) measurements. The diffraction patterns reveal a dominant phase, characteristic of the monoclinic SrAl2O4 compound and another unknown secondary phase, in small amount, for doped samples. The data were fitted using the Rietveld method for structural refinements and lattice parameter constants (a, b, c, and β) were determined. Luminescence of Cr3+ ions in this host is investigated for the first time by excitation and emission spectroscopy at room temperature. Emission spectra present a larger band and a smaller structure associated to the and electronic transitions, respectively. The obtained results are analyzed by crystal-field theory and the crystal-field parameter, Dq, and Racah parameters, B and C, are determined from the excitation measurements.  相似文献   

5.
The design and operational characteristics of an interferometric technique for measuring thermal expansion of metals between room temperature and temperatures in the range 1500 K to their melting points are described. The basic method involves rapidly heating the specimen from room temperature to temperatures above 1500 K in less than 1 s by the passage of an electrical current pulse through it, and simultaneously measuring the specimen expansion by the shift in the fringe pattern produced by a Michelson-type polarized beam interferometer and the specimen temperature by means of a high-speed photoelectric pyrometer. Measurements of linear thermal expansion of tantalum in the temperature range 1500–3200 K are also described. The results are expressed by the relation: $$\begin{gathered} (l - l_0 )/l_0 = 5.141{\text{ x 10}}^{ - {\text{4}}} + 1.445{\text{ x 10}}^{ - {\text{6}}} T + 4.160{\text{ x 10}}^{ - {\text{9}}} T^2 \hfill \\ {\text{ }} - 1.309{\text{ x 10}}^{ - {\text{12}}} T^3 + 1.901{\text{ x 10}}^{ - {\text{16}}} T^4 \hfill \\ \end{gathered}$$ where T is in K and l0 is the specimen length at 20°C. The maximum error in the reported values of thermal expansion is estimated to be about 1% at 2000 K and not more than 2% at 3000 K.  相似文献   

6.
Structural, electrical and Mossbauer studies were carried out for the system Li0.5Fe x Ga2.50-xO4. All the compounds with 0 ? x? 2.5 crystallised with cubic spinel structure. Lattice constant values calculated from XRD analysis were found to increase with increasing x. X-ray intensity calculations indicated that Li1+ occupies only the octahedral site and Ga3+ and Fe3+ ions occupy both octahedral and tetrahedral sites. Activation energy and thermoelectric coefficient values decreased with increasing values of x. All the compounds studied were p-type semiconductors and possess low mobility values of 10?7-10?9 cm2V?1 s?1. Mossbauer data show the presence of iron in the Fe3+ state and the isomer shift values for all the compositions of the system are within the range of high spin ferric compounds. The probable ionic configuration for the system is suggested as: $${\text{Ga}}_{{\text{1 - }}\alpha }^{{\text{3 + }}} {\text{Fe}}_\alpha ^{{\text{3 + }}} [Li_{0.5}^1 {\text{Fe}}_{{\text{x - }}\alpha }^{{\text{3 + }}} {\text{Ga}}_{{\text{2}}{\text{.5 - x + }}\alpha }^{\text{3}} ] {\text{O}}_{\text{4}}^{{\text{2 - }}} $$   相似文献   

7.
Coefficients (α) of linear thermal expansion of Rh, Ir, and Pd are reported to be respectively 8.45, 6.65, and 11.78×10?6 ° K?1 at 238°K, and 3.50, 3.43, and 6.21×10?6 °K?1 at 75°K. At temperatures below 10°K, α may be represented by $$\begin{gathered} 10^{10} \alpha = 20{\rm T} + 0.052{\rm T}^3 (Rh) \hfill \\ 10^{10} \alpha = 9{\rm T} + 0.070{\rm T}^3 (Ir) \hfill \\ 10^{10} \alpha = 40.5{\rm T} + 0.435{\rm T}^3 (Pd) \hfill \\ \end{gathered} $$ TheT andT 3terms are identifiable with electron and lattice vibrational components, respectively. Corresponding Grüneisen parameters are γ (electron)≈2.8, 2.7, and 2.22 for Rh, Ir, and Pd, and γ 0 (lattice)≈2.0, 2.3, and 2.25.  相似文献   

8.
Simultaneous measurements of the specific heat capacity, c p, electrical resistivity, ρ, and hemispherical total emittance, ε, of tungsten-3 (wt%) rhenium alloy in the temperature range 1500–3600 K by a subsecond-duration pulse heating technique are described. The results are expressed by the relations $$\begin{gathered} c_{\text{P}} = 0.30332 - 2.8727 \times 10^{ - 4} {\text{ }}T + 1.9783 \times 10^{ - 7} {\text{ }}T^2 \hfill \\ {\text{ }} - 5.6672 \times 10^{ - 11} {\text{ }}T^3 + 6.5628 \times 10^{ - 15} {\text{ }}T^4 , \hfill \\ \rho = - 24.261 + 8.1924 \times 10^{ - 2} {\text{ }}T - 3.7656 \times 10^{ - 5} {\text{ }}T^2 \hfill \\ {\text{ + 1}}{\text{.1850}} \times {\text{10}}^{ - 8} {\text{ }}T^3 - 1.3229 \times 10^{ - 12} {\text{ }}T^4 , \hfill \\ \varepsilon = 0.1945 + 5.881 \times 10^{ - 5} {\text{ }}T, \hfill \\ \end{gathered} $$ where T is in K, cp is in J·g?1·K?1, and ρ is in μΩ·cm. The melting temperature (solidus temperature) was also measured and was determined to be 3645 K. Uncertainties of the measured properties are estimated to be not more than ±3 % for specific heat capacity, ±1 % for electrical resistivity, ± 5 % for hemispherical total emittance, and ±20 K for the melting temperature.  相似文献   

9.
Measurements of heat capacity and electrical resistivity of palladium in the temperature range 1400–1800 K by a subsecond duration pulse heating technique are described. The results are expressed by the relations: 1 $$C_p = 32.19 - 5.966{\text{x10}}^{{\text{ - 3}}} T + 4.440{\text{x10}}^{{\text{ - 6}}} T^2 $$ 1 $$p = 15.42 + 1.840{\text{x10}}^{{\text{ - 2}}} T$$ where C p is in J · mol?1 · K?1, ρ in μΩ · cm, and T in K. Estimated maximum inaccuracies of the measured properties are: 3% for heat capacity and 1% for electrical resistivity.  相似文献   

10.
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+ were found to be stable. The value of varies from close to zero at the dissociation partial pressure of oxygen to 0.12 at 0.1 MPa. The ternary oxide CuLaO2, with copper in monovalent state, coexisted with Cu, Cu2O, La2O3, and/or CuLa2O4+ in different phase fields. The compound CuLa2O4+, with copper in divalent state, equilibrated with Cu2O, CuO, CuLaO2, La2O3, and/or O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 K to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields, Cu + La2O3 + CuLaO2, Cu2O + CuLaO2 + CuLa2O4 and La2O3 + CuLaO2 + CuLa2O4. Although measurements on two cells were sufficient for deriving thermodynamic properties of the two ternary oxides, the third cell was used for independent verification of the derived data. The Gibbs energy of formation of the ternary oxides from their component binary oxides can be represented as a function of temperature by the equations:
  相似文献   

11.
Steady-state sublimation vapour pressures of anhydrous bismuth tribromide have been measured by the continuous gravimetric Knudsen-effusion method from 369.3 to 478.8 K. Additional effusion measurements have also been made from 435.4 to 478.6 K by the torsion—effusion method. Based on a correlation of Δsub H 298 0 and Δsub S 298 0 , a recommended p(T) equation has been obtained for BiBr3(s) $$\alpha - {\rm B}i{\rm B}r_3 :log{\text{ }}p = - C\alpha /T - 12.294log{\text{ }}T + 5.79112 \times 10^{ - 3} {\text{ }}T + 47.173$$ with Cα=(Δ subH 298 0 +20.6168)/1.9146×10-2 $$\beta - {\rm B}i{\rm B}r_3 :log{\text{ }}p = - C\beta /T - 23.251log{\text{ }}T + 1.0492 \times 10^{ - 2} {\text{ }}T + 77.116$$ with Cβ=(Δ subH 298 0 +46.2642)/1.9146×10-2 where p is in Pa, T in Kelvin, Δ sub H 298 0 in kJ mol?1. Condensation coefficients and their temperature dependence have been derived from the effusion measurements.  相似文献   

12.
The linear thermal expansion of molybdenum has been measured in the temperature range 1500–2800 K by means of a transient (subsecond) interferometric technique. The molybdenum selected for these measurements was the Standard Reference Material SRM 781 (a high-temperature enthalpy and heat capacity standard). The results are expressed by the relation where T is in K and l 0 is the specimen length at 20°C. The maximum error in the reported values of thermal expansion is estimated to be about 1% at 2000 K and not more than 2% at 2800 K.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

13.
Simultaneous measurements, by a subsecond duration transient technique, to determine the specific heat capacity, c p , the electrical resistivity, ρ, and the hemispherical total emittance in the temperature range 1400–1700 K, and the melting point and the radiance temperature at the melting point, of AISI type 304L stainless steel are described. The results are expressed by the relations: $$c_p = 1127{\text{ }} - {\text{ }}7.265{\text{ }} \times {\text{ }}10^{ - 1} {\text{ }}T{\text{ }} + {\text{ }}2.884{\text{ }} \times {\text{ }}10^{ - 4} {\text{ }}T^2$$ $$\rho = 75.59{\text{ }} + {\text{ }}4.695{\text{ }} \times {\text{ }}10^{ - 2} {\text{ }}T{\text{ }} - {\text{ }}9.592{\text{ }} \times {\text{ }}10^{ - 6} {\text{ }}T^2$$ where c p is in J · kg?1 · K?1, ρ is in ΜΩ · cm, and T is in K. The value of the hemispherical total emittance is 0.37 in the range 1700–1900 K. The melting point and the radiance temperature (at 653 nm) at the melting point are 1707 and 1590 K, respectively, yielding a value of 0.385 for the normal spectral emittance at the melting point. Estimated inaccuracies of the measured properties are: 3% for the specific heat capacity, 2% for electrical resistivity, 5% for hemispherical total emittance, and 8 K for melting point and radiance temperature at the melting point.  相似文献   

14.
Using the multiphase equilibration technique for the measurement of contact angles, the surface and grain-boundary energies of polycrystalline cubic ZrO2 in the temperature range of 1173 to 1523 K were determined. The temperature coefficients of the linear temperature function obtained, are expressed as $$\frac{{{\text{d}}\gamma }}{{{\text{d}}T}}({\text{ZrO}}_{\text{2}} ){\text{ }} = {\text{ }} - 0.431{\text{ }} \times {\text{ }}10^{ - 3} {\text{ }} \pm {\text{ }}0.004{\text{ }} \times {\text{ }}10^{ - 3} {\text{ Jm}}^{ - {\text{2}}} {\text{ K}}^{ - {\text{1}}} $$ and $$\frac{{{\text{d}}\gamma }}{{{\text{d}}T}}({\text{ZrO}}_{\text{2}} - {\text{ZrO}}_{\text{2}} ){\text{ }} = {\text{ }} - 0.392{\text{ }} \times {\text{ }}10^{ - 3} {\text{ }} \pm {\text{ }}0.126{\text{ }} \times {\text{ }}10^{ - 3} {\text{ Jm}}^{ - {\text{2}}} {\text{ K}}^{ - {\text{1}}} $$ respectively. The surface fracture energy obtained with a Vickers microhardness indenter at room temperature is found to be γ F=3.1 J m?2.  相似文献   

15.
The isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), saturation densities (\({\rho _{\rm S}^{\prime}}\) and \(({\rho_{\rm S}^{\prime\prime})}\)), vapor pressures (P S), thermal-pressure coefficients \({\gamma_V=\left({\partial P/\partial T}\right)_V}\), and first temperature derivatives of the vapor pressure γ S = (dP S/dT) of diethyl ether (DEE) on the liquid–gas coexistence curve near the critical point have been measured with a high-temperature and high-pressure nearly constant-volume adiabatic piezo-calorimeter. The measurements of \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) were made in the liquid and vapor one- and two-phase regions along the coexistence curve. The calorimeter was additionally supplied with a calibrated extensometer to accurately and simultaneously measure the PVTC V VT, and thermal-pressure coefficient, γ V , along the saturation curve. The measurements were carried out in the temperature range from 416 K to 466.845 K (the critical temperature) for 17 liquid and vapor densities from 212.6 kg · m?3 to 534.6 kg · m?3. The quasi-static thermo- (reading of PRT, T ? τ plot) and baro-gram (readings of the tensotransducer, P ? τ plot) techniques were used to accurately measure the phase-transition parameters (P S ,ρ S ,T S) and γ V . The total experimental uncertainty of density (ρ S), pressure (P S), temperature (T S), isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), and thermal-pressure coefficient, γ V , were estimated to be 0.02 % to 0.05 %, 0.05 %, 15 mK, 2 % to 3 %, and 0.12 % to 1.5 %, respectively. The measured values of saturated caloric \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) and saturated thermal (P S, ρ S, T S) properties were used to calculate other derived thermodynamic properties C P C SWK T P int, ΔH vap, and \({\left({\partial V/\partial T}\right)_P^{\prime}}\) of DEE near the critical point. The second temperature derivatives of the vapor pressure, (d2 P S/dT 2), and chemical potential, (d2 μ/dT 2), were also calculated directly from the measured one- and two-phase liquid and vapor isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) near the critical point. The derived values of (d2 P S/dT 2) from calorimetric measurements were compared with values calculated from vapor–pressure equations. The measured and derived thermodynamic properties of DEE near the critical point were interpreted in terms of the “complete scaling” theory of critical phenomena. In particular, the effect of a Yang–Yang anomaly of strength R μ on the coexistence-curve diameter behavior near the critical point was studied. Extended scaling-type equations for the measured properties P S (T), ρ S (T), and \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) as a function of temperature were developed.  相似文献   

16.
17.
An isothermal section of the phase diagram of the system Co-Sb-O at 873 K was established by isothermal equilibration and XRD analyses of quenched samples. The following galvanic cells were designed to measure the Gibbs energies of formation of the three ternary oxides namely CoSb2O4, Co7Sb2O12 and CoSb2O6 present in the system.
where 15 CSZ stands for ZrO2 stabilized by 15 mol % CaO. The reversible emfs obtained could be represented by the following expressions.
The standard Gibbs energies of formation of CoSb2O4, Co7Sb2O12 and CoSb2O6 were computed from the emf expressions:
The reasonability of the above data were assessed by computing the entropy change for the solid-solid reactions leading to the formation of ternary oxides from the respective pairs of constituent binary oxides.  相似文献   

18.
This paper reports the measurement of thermoelectric-power (S) at different temperatures (800–1100 K) and electrical conductivity (σ) as a function of electric field strength, time, ac signal frequency and temperature (650–1200 K) for pressed pellets of heavy rare-earth tungstates (HRET) with a general formula RE2(WO4)3 [where RE = Tb, Dy, Ho, Er, Tm and Yb]. These tungstates are typical insulating compounds with room-temperature σ value less than 10?10 ohm?1 cm?1 and become semiconductors at elevated temperature with σ values of the order of 10?5 ohm?1 cm?1 at 1200 K. The S vs T?1 and log σ vs T?1 plots are linear, but a change in the slope of straight lines occurs at a temperature (TB) which lies between 900–1025 K for different tungstates. These break temperatures are the same for both S and σ plots. It has been found that HRET are mixed ionic-electronic conductors. Above TB the electronic conduction dominates over the ionic conduction, but below TB both become comparable. The electronic conduction above TB is intrinsic with large polaron holes as the principal charge carriers; they conduct via a band mechanism. The energy band gap lies in the range 3.2 to 4.0 eV, and the charge carrier mobility in the range 3.8×10?2 to 2.5 cm2/V-Sec for the different tungstates. Below TB both electronic and ionic conduction are extrinsic. The electrons conduct via a thermally activated hopping mechanism with an activation energy lying in the range 0.87 to 1.30 eV, and the holes via a diffusion process with an activation energy lying in the range 0.88 to 1.23 eV for the different tungstates.  相似文献   

19.
Having estimated the critical driving force associated with martensitic transformation,ΔG α→M, as $$\Delta G^{\alpha \to M} = 2.1 \sigma + 900$$ whereσ is the yield strength of austenite atM s, in MN m?2, we can directly deduce theM s by the following equation: $$\Delta G^{\gamma \to {\rm M}} |_{M_S } = \Delta G^{\gamma \to \alpha } + \Delta G^{\alpha \to M} = 0.$$ The calculatedM s are in good agreement with the experimental results in Fe-C, Fe-Ni-C and Fe-Cr-C, and are consistent with part of the data in Fe-Ni, Fe-Cr and Fe-Mn alloys. Some higher “M s” determined in previous works may be identified asM a,M s of surface martensite or bainitic temperature. TheM s of pure iron is about 800 K. TheM s in Fe-C can be approximately expressed as $$M_S (^\circ {\text{C}}) = 520 {\text{--- }}\left[ {{\text{\% C}}} \right]{\text{ }}x 320.$$ In Fe-X, the effect of the alloying element onM s depends on its effect onT 0 and on the strengthening of austenite. An approach for calculation of ΔG γ→α in Fe-X-C is suggested. Thus dM s/dx c in Fe-X-C is found to increase with the decrease of the activity coefficient of carbon in austenite.  相似文献   

20.
Using the “break-junction” technique, we prepared and studied superconductor–constriction–superconductor (ScS) nanocontacts in polycrystalline samples of Fe-based superconductors CeO0.88F0.12FeAs (Ce-1111; $T_{C}^{\mathrm{bulk}} = 41 \pm1~\mathrm{K}$ ), LaO0.9F0.1FeAs (La-1111; $T_{C}^{\mathrm{bulk}} = 28 \pm1~\mathrm {K}$ ), and FeSe ( $T_{C}^{\mathrm{bulk}} = 12 \pm1~\mathrm{K}$ ). We detected two subharmonic gap structures related with multiple Andreev reflections, indicating the presence of two superconducting gaps with the BCS-ratios 2Δ L /k B T C =4.2÷5.9 and 2Δ S /k B T C ~1?3.52, respectively. Temperature dependences of the two gaps Δ L,S (T) in FeSe indicate a k-space proximity effect between two superconducting condensates. For the studied iron-based superconductors, we found a linear relation between the gap Δ L and magnetic resonance energy, E res≈2Δ L .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号