首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
在分析"当前"统计模型及自适应滤波技术基础上,提出了一种机动频率模糊自适应目标跟踪(FAMF)算法.通过模糊控制方法,在线调节"当前"统计模型的机动频率参数,使模型对不同的目标机动模式有更强的自适应能力.在想定初始条件下,对FAMF算法进行Monte Carlo仿真对比实验,结果表明:FAMF算法运行稳定,适应能力强,有效的提高了"当前"统计模型的跟踪性能,便于实际应用.  相似文献   

2.
文中通过对CS-Jerk模型中的参数以及卡尔曼滤波的分析,提出了一种改进的CS-Jerk模型目标跟踪算法。该算法根据量测新息及其变化率,通过模糊推理机制自适应的调整"当前"统计Jerk模型的机动频率,接着利用强跟踪滤波器对运动模型进行滤波来弥补卡尔曼滤波器的不足。仿真结果表明,提出的改进CS-Jerk模型目标跟踪算法显著提高了原CS-Jerk模型在不同机动模式下对高机动目标的跟踪精度,验证了算法的合理性和可行性。  相似文献   

3.
模糊自适应机动目标跟踪算法   总被引:2,自引:0,他引:2  
提出了一种模糊自适应机动目标跟踪算法.该算法首先通过新息进行机动发生与否及强弱的判断,进而由模糊推理系统给出了过程噪声的自适应调整,并提出了通过测量获得测量噪声特性的方法,使得测量噪声方差能准确地反映测量仪器本身的性质和环境的影响.通过仿真实验验证了该算法在目标发生机动时,能自适应调整过程噪声,对机动目标有效地进行跟踪,相比传统的卡尔曼滤波具有更小的跟踪误差.  相似文献   

4.
提出了一种模糊自适应IMM算法(FAIMM),通过模糊逻辑,根据加速度估计值,自适应地摒弃概率较小的模型,仅选取整个模型集合中最能反映目标“当前”机动的一个模型子集进行运算,从而减少了模型数目;同时采用模糊方法计算模型概率,从而降低了算法的计算量;进一步,通过二级模糊推理,根据模型参考加速度ui的大小自适应地选择适当的最大机动加速度amax和a-max,使系统具有一定的方差调整能力,从而提高了跟踪精度。仿真结果表明,较之于标准IMM算法.FAIMM算法在机动目标跟踪精度、跟踪的平稳性以及收敛速度等方面都有所改善。  相似文献   

5.
为了克服“当前”统计模型自适应跟踪算法(CAF)跟踪匀速运动目标误差较大和跟踪加速机动目标速度与加速度估计误差和动态时延较大的缺陷,通过分析研究CAF算法,采用截断正态分布表征目标的机动加速度特性,考虑风速和加速度估计均值的影响,对机动加速度与方差自适应关系修正,自适应补偿过程噪声协方差矩阵,提出了一种改进的机动目标自适应跟踪算法。理论分析与仿真结果表明,该算法能够准确描述目标的各种机动情况,具有良好的跟踪性能和实际应用价值。  相似文献   

6.
在机动目标跟踪研究领域,"当前"统计模型自适应跟踪算法(ATS)在仅有位置观测信息的机动目标跟踪中具有一定应用价值。针对ATS算法中目标最大机动加速度为预设的常值,存在不能很好的适应各种机动情况的问题,对目标最大机动加速度进行实时自适应调整优化设计,使目标最大机动加速度以指数形式实时逼近加速度估值均值。改进后的滤波算法保持了原算法机动加速度的分布特性,提高了目标的跟踪精度。  相似文献   

7.
机动目标跟踪的自适应卡尔曼滤波算法实现   总被引:3,自引:0,他引:3  
为真实反映目标机动范围与强度的变化,引入了机动目标的“当前”统计模型,提出了一种基于该模型的自适应卡尔曼滤波算法.仿真结果表明,能有效改善在机动目标跟踪中传统的卡尔曼滤波可能出现的发散情况,提高了跟踪的准确性和稳定性.  相似文献   

8.
机动目标当前统计模型模糊自适应算法   总被引:1,自引:0,他引:1  
刘望生  潘海鹏  李亚安 《兵工学报》2016,37(11):2037-2043
针对当前统计模型常规算法跟踪机动目标的缺陷,提出了当前统计模型模糊自适应算法。该算法根据规范化的量测新息及其变化率并通过模糊推理实时选取机动频率,给出了加速度方差的新息幂函数调整方法,采用加速度估计值和预测值的偏差在线更新当前加速度均值。在此基础上,结合高斯隶属函数和强跟踪算法对其权值予以修正。当前统计模型模糊自适应算法不受机动频率人为给定和最大加速度极值设置的限制,适用于不同范围和程度的机动。利用当前统计模型模糊自适应算法对阶跃机动、圆周机动、Jerk机动3种典型机动场景进行了计算机仿真,并与当前统计模型常规跟踪算法和Jerk模型自适应算法进行了比较。仿真结果表明,该算法扩大了跟踪范围,具有较好的稳态特性和瞬态特性,其跟踪精度和收敛速度优于其他两种算法。  相似文献   

9.
在交互多模IMM的基础上,利用时变马尔可夫链切换系数对模型进行切换,实现对未知状态转移概率的自适应调节,提高了对机动目标的跟踪精度.仿真结果表明,改进后的IMM算法比IMM算法的跟踪精度更高,具有全面自适应跟踪能力.  相似文献   

10.
针对“当前”统计模型算法中加速度极限值预先设定对算法造成的不利影响,提出了一种改进的机动目标跟踪算法,即位置偏差估计自适应算法.该算法利用位置预测估计与位置估计之间的偏差对噪声方差进行自适应调整,从而避免了加速度极限值的预先设定问题,提高了机动目标的跟踪性能.仿真结果也表明了该算法的良好跟踪性能.  相似文献   

11.
王向华  覃征  杨慧杰  杨新宇 《兵工学报》2009,30(8):1089-1093
基本的机动目标“当前”统计模型及其自适应卡尔曼滤波算法虽能对强机动目标进行很好的跟踪,但是在跟踪弱机动目标时却存在较大的误差。针对这一问题,新算法中引入一种非线性模糊隶属度函数来自适应地调整目标加速度上下限,并从理论上分析了新算法对于弱机动目标跟踪的有效性。通过计算机仿真验证了新算法相对于基本“当前”统计模型及其自适应跟踪算法的明显优势。  相似文献   

12.
The basiccurrentstatistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the ne...  相似文献   

13.
基于模糊控制交互式多模型粒子滤波的静电机动目标跟踪   总被引:1,自引:0,他引:1  
付巍  郑宾 《兵工学报》2014,35(1):42-48
针对交互式多模型粒子滤波算法(IMMPF)的精度不高,算法更新时间长,难以满足静电机动目标跟踪要求的问题,提出了一种新的基于模糊控制的交互式多模型粒子滤波算法(FIMMPF)。该算法先利用模糊控制方法实现实时调整交互式多模型算法中的转换概率矩阵,使与目标当前运动状态最接近的运动模型在混合产生这一采样时刻的初始状态向量里占有更大的比重。同时,为了提高基本粒子滤波算法的精度,减小算法更新时间,再利用中心差分扩展卡尔曼滤波算法产生基本粒子滤波的建议分布函数,实现对目标运动状态的更新。理论分析和仿真结果表明,所提出的算法能够以更高的定位精度,更小的计算量实现对静电机动目标的跟踪。  相似文献   

14.
为了提高地空拦截弹雷达导引头对机动目标状态估计的精度,在增加系统观测量的基础上,提出了一种针对机动目标跟踪的自适应滤波算法。利用量测残差统计值估计目标的机动状态,自适应的调整状态方程机动频率和加速度极限值;同时利用观测噪声统计估值器,调整观测值方差大小。仿真试验结果表明该算法具有良好的机动目标跟踪性能,并能自适应变化较大的观测噪声。  相似文献   

15.
雷达/红外数据融合的机动目标跟踪算法综述   总被引:1,自引:0,他引:1  
雷达与红外数据融合能够实现信息互补,提高目标跟踪精度、识别能力以及增强系统的抗干扰性,因此受到广泛关注。针对雷达和红外数据融合跟踪机动目标的体系结构,基于近几年国内外的研究,对整个体系中的算法进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号