首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用韧性优良的共聚聚丙烯(PPR)作为增强基体,通过玻纤(GF)与PPR制备高性能PPR/GF复合材料,研究了流动改性剂、马来酸酐接枝聚丙烯(PP-g-MAH)和玻纤的含量以及挤出次数对PPR/GF复合材料结构与性能的影响.结果表明:自制的流动改性剂可大幅增加PPR/GF的熔体质量流动速率,流动性可适用于注塑工艺;PP-g-MAH增加了PPR基体与GF之间的界面相互作用,提高PP/GF复合材料的力学性能;随玻纤含量增加,PP/GF复合材料的拉伸强度和模量大幅增加,缺口冲击强度和断裂伸长率有所降低,但材料的韧性仍保持较高水平,所制备PPR/GF/PP-g-MAH共混材料的性能与ABS相当,可替代ABS工程塑料作为结构件使用;多次挤出加工会降低PPR/GF复合材料中玻纤的平均长度和材料的力学性能.  相似文献   

2.
采用熔体浸渍技术制备了长玻璃纤维母料(LGF/PP-g-MAH/PP)增强聚丙烯(PP)复合材料(LGF/PP)。通过双螺杆挤出机制备了同等配比的短玻纤增强聚丙烯(SGF/PP)复合材料。研究了LGF含量、环氧树脂(EP)和固化剂(2E4MZ)对LGF/PP复合材料的力学性能影响。结果表明:当LGF质量分数为35%~40%时,LGF/PP的综合力学性能最好,且明显优于同样组成的SGF/PP复合材料。EP和含固化剂(2E4MZ)的EP对LGF/PP复合材料的力学性能提高有一定的作用。SEM照片分析表明:EP的加入能改善玻纤与聚丙烯基体的界面粘接。  相似文献   

3.
文分别研究了短玻纤和连续玻纤增强聚丙烯复合材料的性能,讨论了增容剂即马来酸酐接枝聚丙烯(PP-g-MAH)含量、玻纤含量、挤出工艺、玻纤长度等因素对玻纤增强聚丙烯性能的影响。结果表明,PP-g-MAH的加入增强了界面粘接强度,显著提高玻纤增强聚丙烯复合材料的力学性能;适当提高挤出温度和降低螺杆转速可提高玻璃纤维增强聚丙烯复合材料的力学性能;连续玻纤增强聚丙烯复合材料的力学性能大大优于短玻纤增强聚丙烯复合材料的力学性能。  相似文献   

4.
《塑料科技》2013,(12):65-68
利用自制的熔体浸渍装置制备了长玻璃纤维增强聚丙烯(PP)复合材料。考察了PP基体流动性、玻璃纤维与PP界面结合强度、玻纤用量对复合材料力学性能的影响。结果表明:PP基体流动性越好,材料的力学性能越高;相容剂的使用会提高玻璃纤维和PP树脂界面的结合强度,从而提高材料的力学性能;材料的力学性能随玻纤用量的增加出现先增大后减小的趋势,当玻纤用量为50%时,复合材料力学性能最佳。  相似文献   

5.
《塑料科技》2017,(10):25-29
采用熔体浸渍包覆长玻璃纤维装置制备了长玻纤增强聚丙烯(PP/LFT)复合材料,通过双螺杆挤出机制备了同等配比的短玻纤增强聚丙烯(PP/SFT)复合材料。研究了增容剂含量、预浸料颗粒长度以及加工工艺对玻纤增强聚丙烯(PP/GF)复合材料力学性能的影响。结果表明:PP/LFT复合材料的力学性能明显优于PP/SFT复合材料,其拉伸强度及缺口冲击强度分别可达115.0 MPa和42.4 kJ/m~2;增容剂马来酸酐接枝聚丙烯(PP-g-MAH)的加入明显改善了GF与PP间的界面黏结强度,进一步提升了复合材料的力学性能,相比之下,增容剂对PP/SFT复合材料的性能提升效果更为明显;提高预浸料颗粒长度有利于复合材料纤维保留长度和力学性能的提升;适度提高加工温度,可进一步提高浸渍效果和复合材料的力学性能。  相似文献   

6.
研究了玻璃纤维(GF)、自制马来酸酐接枝聚丙烯(PP-g-MAH)和螺杆转速对短玻纤增强聚丙烯(PP/SFT)复合材料力学性能和微观形貌的影响。结果表明:随着GF用量增加,复合材料的弯曲模量和缺口冲击强度增大,拉伸强度先增大后降低,PP/SFT复合材料断面呈现脆性断裂;随着增容剂PP-g-MAH用量增加,拉伸强度和缺口冲击强度先增加后降低,弯曲模量基本不变;当PP,GF和PPg-MAH的质量比为50∶50∶3时,其综合性能最优,拉伸强度为113.0 MPa,冲击强度为15.8kJ/m~2,复合材料断面呈现韧性断裂;螺杆转速和剪切增大会降低纤维平均长度和复合材料的力学性能。  相似文献   

7.
以长玻璃纤维为增强材料,不同聚丙烯(PP)树脂为基体,通过特制的浸渍设备制备长玻璃纤维增强聚丙烯复合材料(LGF-PP)。考察了PP树脂的熔体质量流动速率、聚合类型(共聚和均聚)及长玻璃纤维的含量对增强聚丙烯复合材料的力学性能的影响及其机理。结果表明,基体树脂的流动性越好,增强复合材料力学性能越优;复合材料的力学强度等力学性能随着长玻璃纤维含量的增加而增大;同时,PP的聚合类型(共聚和均聚)对复合材料影响程度各不相同。  相似文献   

8.
PP-g-MAH对PP/纳米SiO_2复合材料性能的影响   总被引:1,自引:0,他引:1  
采用熔融共混法制备了聚丙烯(PP)/纳米SiO2复合材料,研究了相容剂马来酸酐接枝聚丙烯(PP-g-MAH)对复合材料力学性能、结晶性能及界面作用的影响。结果表明:PP-g-MAH能有效地增强纳米SiO2与PP基体间的界面作用,提高复合材料的力学性能;同时,PP-g-MAH增强了纳米SiO2的成核活性,使PP的结晶温度升高,球晶细化。  相似文献   

9.
以聚丙烯(PP)为基体、碳化硅(Si C)为导热填料、马来酸酐接枝聚丙烯(PP-g-MAH)为增容剂,利用双螺杆挤出机制备了PP/Si C导热复合材料,分别研究了Si C、PP-g-MAH用量以及钛酸酯偶联剂的引入对复合材料导热及力学性能的影响。结果表明:PP/Si C复合材料的导热性能随着Si C或PP-g-MAH含量的增加而提升,但力学性能变化不大;PP-g-MAH及钛酸酯偶联剂的引入均可增强导热填料与基体之间的界面黏结力,二者之间具有明显的协同作用,可使复合材料的热导率以及Si C在基体中的分散效果明显提高。  相似文献   

10.
以连续长玻璃纤维为增强材料,以聚丙烯(PP)与尼龙(PA)6树脂为基体,以马来酸酐接枝PP(PP-g-MAH)作为相容剂,经过双螺杆挤出机和特制的浸润装置制备了长玻纤增强PP/PA6合金材料。通过常规力学性能、球压痕硬度、耐划伤、热变形温度等测试和微观结构分析,考察了PA6含量及其与PP-g-MAH质量比对合金材料强度、刚性、常低温冲击性能、硬度、耐刮擦以及耐热性能的影响。结果显示,当PA6/PP-g-MAH质量比为2,即PA6含量为10份,PP-g-MAH含量为5份时,合金材料的综合性能达到最佳;当PA6/PP-g-MAH质量比低于2时,PA6特性优势随着其含量增加而提升,而当PA6/PP-g-MAH质量比高于2时,相容剂不足以增容PP/PA6两相,综合性能有所衰减。所制备的长玻纤增强PP/PA6合金材料具有较好的强度、刚性、韧性、硬度以及更好的–40℃冲击性能,且其密度低,耐刮擦性能优异,在特殊领域如电动工具外壳具有广阔的应用前景。  相似文献   

11.
以聚丙烯(PP)树脂为基体,玻璃纤维(GF)为增强材料,通过特制的浸渍设备制备长玻璃纤维(LGF)增强PP复合材料PP-LGF。考察了GF的含量、PP树脂的熔体流动速率以及表面极性剂(HT-17)含量对复合材料力学性能和黏结性能的影响。结果表明,复合材料的力学性能随GF含量的增加而增大,且基体树脂的流动性越好,复合材料力学性能越优异;添加表面极性剂能大幅度提高复合材料黏结性能,当其添加的质量分数为3%时,LGF质量分数40%的复合材料的表面张力为48mN/m,制品的剪切强度为1.65kJ/m2,界面破坏形式为80%胶内聚破坏,复合材料的综合性能满足全塑尾门要求。  相似文献   

12.
采用熔融挤出的方法制备了玻璃纤维增强废旧聚丙烯(RPP/GF)复合材料,分析了不同含量的PP接枝马来酸酐(PP-g-MAH)和PE接枝马来酸酐(PE-g-MAH)相容剂对复合材料力学性能的影响。结果表明:添加PP-gMAH能改善玻纤与RPP界面结合强度,随着相容剂PP-g-MAH含量的增加,RPP/GF复合材料的弯曲强度逐渐提高,当PP-g-MAH的含量为7 phr时,能有效提高复合材料的弯曲强度。由于RPP中含有PE成分,添加少量PE-g-MAH能增加玻纤与RPP基体中PE的界面结合强度,从而继续提升复合材料的弯曲强度,复合材料的缺口冲击强度也得到提升。  相似文献   

13.
研究了玻璃纤维(GF)和马来酸酐接枝聚丙烯(PP-g-MAH)对聚丙烯力学性能的影响。结果表明:随着GF与PP的质量比增加,玻璃纤维增强聚丙烯的拉伸强度增加,冲击强度总体呈下降趋势。当PP与GF的质量比为55∶45时,拉伸强度最高,达到45MPa。当PP与GF的质量比一定时,在玻璃纤维增强聚丙烯复合材料中添加增容剂马来酸酐接枝聚丙烯(PP-g-MAH),可使其拉伸强度得到很大的提高,但是冲击性能却下降。当PP与GF的质量比为75∶25时,随PP-g-MAH与PP/GF复合材料的质量比增加,其拉伸强度先增大后减小,其冲击性能总体呈下降趋势。当PP-g-MAH,PP和GF的质量比为15∶75∶25时,其综合性能最优,拉伸强度为50.5MPa,冲击强度为4.3kJ/m2。  相似文献   

14.
通过熔融共混法制备了聚丙烯(PP)/纳米二氧化硅(nano-SiO2)复合材料.研究了nano-SiO2用量和第三组分聚丙烯接枝马来酸酐(PP-g-MAH)对材料力学性能和流动性能的影响.实验结果表明:当nano-SiO2用量为4份时,材料的力学性能最佳.对PP、PP/nano-SiO2、PP/nano-SiO2/PP-g-MAH复合材料进行DSC热分析和SEM照片观察发现:nano-SiO2对PP基体有异相成核作用,PP-g-MAH可以提高nano-SiO2在PP基体中的相容性.  相似文献   

15.
高韧性高强度聚丙烯复合材料的研究   总被引:2,自引:0,他引:2  
研究了自制的马来酸酐接枝聚丙烯(PP-g-MAH)和马来酸酐、苯乙烯接枝聚丙烯(PP-g-MAH-g-St)2种增容剂对聚丙烯/聚烯烃弹性体/玻璃纤维(PP/POE/GF)复合材料力学性能的影响,利用扫描电子显微镜观察了试样断口形貌。结果表明,2种增容剂均显著改善了GF与PP基体的界面粘结强度,从而提高了复合材料的力学性能;就2种增容剂的效果而言,PP-g-MAH-g-St的增容效果远优于PP-g-MAH。当PP-g-MAH-g-St的质量分数为8%时,PP/POE/GF/PP-g-MAH-g-St复合材料的综合性能已接近常用工程塑料的性能。  相似文献   

16.
以短切玻璃纤维(GF)为增强材料,马来酸酐接枝聚丙烯(PP-g-MAH)为相容剂,采用双螺杆挤出机制备了GF增强聚丙烯(PP)1100N,研究了其强度、模量、耐热性能、微观形貌和流变性能等。结果表明:GF显著提高了PP 1100N的力学性能和负荷变形温度,而PP-g-MAH使PP/GF复合材料的界面黏结作用增强,力学性能进一步提高;添加GF使PP/GF复合材料的熔体流动速率(MFR)大幅降低,但PP-g-MAH使PP/GF复合材料的MFR同比增大,这与其在试样熔体状态下的增塑作用有关;GF的添加增大了复合材料的复数黏度受剪切速率影响的敏感性,在相同的实验温度条件下,较纯PP更难恢复形变。  相似文献   

17.
在聚丙烯(PP)基体中加入环氧树脂(EP)、固化剂、马来酸酐接枝聚丙烯(PP-g-MAH),通过动态固化制备了PP/EP复合材料,并对其相容性、力学性能、结晶性能等进行了研究。结果表明:PP/EP为不相容体系,PP-g-MAH作为反应性增容剂对体系的刚性和模量影响较大;通过EP和PP-g-MAH的接枝反应,增强了两相间的界面作用力,降低了EP分散相的尺寸,改善了PP/EP复合材料的力学性能。力学性能测试结果表明,EP与PP-g-MAH的最佳配比为1:1;等温结晶的偏光照片和DSC数据表明,EP阻碍了PP的结晶,使其球晶微细化、结晶度降低。  相似文献   

18.
玻纤增强聚丙烯复合材料性能研究   总被引:7,自引:1,他引:6  
研究了玻纤(GF)、SEBS和聚丙烯接枝马来酸酐(PP-g-MAH)用量对GF增强聚丙烯复合材料性能的影响,以及PP/GF(65/35)、PP-g-MAH/PP/GF(15/65/35)的微观形态。结果表明:随着GF用量的增加,复合材料的拉伸强度、弯曲强度和弯曲模量增加,断裂伸长率降低,冲击强度先减小后增大,PP/GF复合材料断面呈脆性断裂;在PP/GF中添加增韧剂SEBS可以提高复合材料的冲击强度,但拉伸强度、断裂伸长率、弯曲强度和弯曲模量均减小;在PP/GF中添加增容剂PP-g-MAH,可使其拉伸强度、断裂伸长率、弯曲强度、弯曲模量和冲击强度均得到提高,当PP-g-MAH/PP/GF为15/65/35时,复合材料性能优异,材料断面呈韧性断裂。  相似文献   

19.
利用双螺杆挤出机制备了聚丙烯(PP)、碳酸钙(Ca CO3)晶须/芳纶浆粕(PPTA-pulp)系列复合材料,采用力学性能测试方法研究了Ca CO3晶须对芳纶浆粕(5%)填充PP复合材料性能的影响,利用摩擦磨损试验机、热变形温度测试仪研究了PP/Ca CO3晶须/PPTA-pulp复合材料的摩擦学性能及耐热性能,并比较了硬脂酸锌与聚丙烯接枝马来酸酐(PP-g-MAH)改善相容性的效果。结果表明,随着Ca CO3晶须含量的增加,复合材料的拉伸强度先增加后减小,弯曲强度增加,冲击强度逐渐减小;Ca CO3晶须提高了复合材料的摩擦因数与热变形温度;PP-g-MAH改善了纤维与PP基体以及Ca CO3晶须与PP基体之间的亲和性,效果要好于硬脂酸锌。  相似文献   

20.
以自制的马来酸酐接枝聚丙烯(PP-g-MAH)为研究对象,研究了PP-g-MAH对玻璃纤维增强聚丙烯材料性能的影响以及热氧老化对PP-g-MAH分子结构和性能的影响。结果表明,自制的PP-g-MAH大幅度提高了30%玻纤增强聚丙烯材料的力学性能;随着热氧老化时间的延长,PP-g-MAH的MFR不断增加,对玻璃纤维增强聚丙烯材料的力学性能的提升作用不断降低;通过凝胶色谱仪(GPC)、红外光谱(IR)和马来酸酐(MAH)接枝率测定结果的分析,热氧老化过程没有对PP分子链接枝的马来酸酐产生明显的影响,而是引起了聚丙烯分子链的断裂,造成PP-g-MAH分子量下降,导致自身力学性能下降,使得PP与玻璃纤维之间的界面强度下降,使得PP-g-MAH对玻璃纤维增强聚丙烯材料的力学性能提升作用下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号