首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 2 毫秒
1.
Phenomenological models are proposed to describe drop breakup and coalescence in a turbulently agitated liquid-liquid dispersion. Based on these models, breakage and coalescence rate functions are developed and used to solve the general population balance equation describing drop interactions in a continuous flow vessel. Parameters of the models are evaluated by comparison with experimental data on drop size distributions and mixing frequencies obtained in a continuous flow vessel over a range of operating conditions. The favorable agreement between experimental observation and the model are encouraging that the model is suitable for predicting dispersion properties such as drop size distributions, interfacial areas and mixing frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号