首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The well-established “halide salt” route was employed in the present work to produce Al–Ti–B grain refiner alloys with consistent, good properties. The holding step in the production cycle was revised, however, to avoid oxidation of the molten alloy which is believed to be responsible for the relatively low Ti recoveries and thus for the inadequate and inconsistent grain refining efficiency. Stirring during holding was found to degrade the grain refining properties when molten potassium aluminium fluride salt was left on the molten alloy to avoid excessive oxidation. Likewise, holding temperatures higher than 800 °C and holding times longer than 30 min both had an undesirable effect on the grain refining performance. The experimental Al–5Ti–1B grain refiner alloy produced according to the present method provided consistent and better overall grain refining performance.  相似文献   

2.
The impact of the salt addition practice on the microstructure and grain refining efficiency of Al–Ti–B alloys produced by the “halide salt” route was investigated. The grain refining performance of an experimental Al–5Ti–1B master alloy was optimized when the halide salts were pre-mixed before addition to aluminium melt at 800 °C during the production of the grain refiner. The stirring action provided during salt addition was found to degrade, while a high rate of addition was found to improve, the grain refining efficiency. In view of the above, an improved salt addition practice to ensure an exceptional grain refining performance is claimed to comprise the following steps: melting commercial purity aluminium ingot; addition of pre-mixed salts to molten aluminium at 800 °C, at once to facilitate a rapid salt reaction, gently mixing the salts with the aluminium melt without introducing any stirring. The grain refiner master alloy thus produced gives an average grain size of 102 μm 2 min after inoculation.  相似文献   

3.
It is of great interest to replace the K2TiF6 salt so as to reduce the volume of fluoride-bearing particulate material to be added to the aluminium melt in the popular “halide salt” process. Ti sponge was used in the present work as the source of Ti in the production of an Al–5Ti–1B grain refiner. Addition of Ti granules into molten aluminium, either premixed with or before KBF4 salt, has produced Al–5Ti–1B alloys where the boride particles were relatively few and predominantly of the AlB2 type. The grain refining efficiency of these alloys were far from satisfactory. TiB2 was the dominant boride phase with sufficient number of blocky aluminide particles when Ti, in excess of the TiB2 stoichiometry was supplied before hand and the balance was reserved for co-addition with KBF4. Al3Ti particles were generated soon after the Ti solubility limit was exceeded in the first step while the boride particles were subsequently produced by the reaction between molten aluminium, KBF4 and K2TiF6. The Al–5Ti–1B master alloy thus produced provided an adequate grain refining performance while the amount of particulate material to be added to the aluminium melt was reduced by nearly 30%.  相似文献   

4.
It is very desirable to replace the KBF4 salt in the popular “halide salt” process to reduce the volume of fluoride salts to be added to molten aluminium in the production of Al–Ti–B grain refiners. Being over 2 times richer in B, Na2B4O7 is a promising replacement for KBF4, and is used in the present work to produce Al–Ti–B grain refiner master alloys. A fraction of the aluminide particles were entrapped in the spent salt giving a relatively lower Ti recovery when KBF4 was replaced by Na2B4O7. The grain refining performance of the Al–Ti–B grain refiner alloy thus produced was nevertheless acceptable. The spent salt became too viscous with the oxides, aluminides and borides to be removed by decanting when Na2B4O7·5H2O was used to supply boron. The viscous spent salt, entrained in the grain refiner alloy, did not only impair its performance, but also hurt the fluidity of the molten alloy and made pouring difficult.  相似文献   

5.
Al–Ti–B refiners with excess-Ti (Ti:B > 2.2) perform adequately for wrought aluminium alloys but they are not as efficient in the case of foundry alloys. Silicon, which is abundant in the latter, forms silicides with Ti and severely impairs the potency of TiB2 and Al3Ti particles. Hence, Al–Ti–B alloys with excess-B (Ti:B < 2.2) and binary Al–B alloys are favored to grain refine hypoeutectic Al–Si alloys. These grain refiners rely on the insoluble (Al,Ti)B2 or AlB2 particles for grain refinement, and thus do not enjoy the growth restriction provided by solute Ti. It would be very attractive to produce excess-B Al–Ti–B alloys which additionally contain Al3Ti particles to maximize their grain refining efficiency for aluminium foundry alloys. A powder metallurgy process was employed to produce an experimental Al–3Ti–3B grain refiner which contains both the insoluble AlB2 and the soluble Al3Ti particles. Inoculation of a hypoeutectic Al–Si foundry alloy with this grain refiner has produced a fine equiaxed grain structure across the entire section of the test sample which was more or less retained for holding times up to 15 min.  相似文献   

6.
A kind of Al–Ti–C–B master alloy with a uniform microstructure is prepared using a melt reaction method. It is found that the average grain size of α-Al can be reduced from 3500 to 170 μm by the addition of 0.2 wt.% of the prepared Al–5Ti–0.3C–0.2B and the refining efficiency does not fade obviously within 60 min. It is considered that the TiCxBy and TiB2−mCn particles found at the grain center are the effective and stable nucleating substrates for α-Al during solidification, which accounts for the good grain refining performance.  相似文献   

7.
Al-Ti-B refiners with excess-Ti perform adequately for wrought aluminum alloys but inefficiently in the case of foundry alloys. The high content of silicon in the latter, which forms silicides with Ti and severely impairs the refining potency of the nuclei, is known to be responsible for the poor performance. Hence, new grain refiners, such as Al-3B and Al-3Ti-3B master alloys with excess-B have been developed with well documented advantages for Al-Si alloys. It is very desirable to involve TiAl3 particles in the Al-3Ti-3B master alloy to maximize its grain refining efficiency. However, fading phenomenon is a key drawback for application of the TiAl3-containing refiners in aluminum foundry. In the present work, new Al-3Ti-3B grain refiners, containing TiB2, AlB12 and TiAl3 particles were developed with an aim to prolong the acting time after inoculation. The results showed that inoculation of Al-7Si alloy with thus meliorated Al-3Ti-3B grain refiner has produced a fine grain structure which was approximately maintained up to 30 min.  相似文献   

8.
The new generation twin-roll casters are able to cast strips down to 1 mm and offer a notable increase in the casting speed and caster productivity. The thin strips, however, experience profoundly different temperature and deformation gradients in the caster roll gap and may thus require different down stream processing cycles. An attempt was made in the present work to identify the structural features of the thin-cast AlFeSi strip and its response to high temperature annealing treatments. The deformation introduced to the thin AlFeSi strip in the caster roll gap was largely restored by dynamic processes before coiling, producing recrystallized surface layers. When annealed as-cast, the grain structure was rearranged by an ordinary growth process at the surface and via recrystallization in the interior. The entire process was retarded due to the precipitation reactions, particularly in the immediate vicinity of the surface where the supersaturation of the aluminium matrix was the highest and the boundary mobility was severely impaired. The final strip structure was a coarse one. The entire section of the thin strip underwent recrystallization when the thin strip was annealed after a rolling pass. While some improvement appeared to be possible in this practice, a heterogeneous through thickness structure with relatively coarser surface grains prevailed.  相似文献   

9.
Present article is focused on the microstructural features of Al–Ti–C–Sr master alloy, an inoculant for simultaneous grain refinement and modification of hypoeutectic Al–Si alloys. This master alloy is basically a metal matrix composite consisting of TiC and Al4Sr phases formed in situ in the Al-matrix. TiC particles initiate the refinement of primary α-Al through heterogeneous nucleation in molten hypoeutectic Al–Si alloy, while Al4Sr phase dissolves in molten Al–7Si alloy enriching the melt with Sr, which eventually leads to modification of eutectic silicon during solidification of the Al–7Si alloy casting. Thus present master alloy serves in both ways, as a grain refiner and a modifier for hypoeutectic Al–Si alloys.  相似文献   

10.
The response to thermal exposure of ball-milled Al/K2TiF6/KBF4 powder blends was investigated to explore the potential of PM processing for the manufacture of Al–Ti–B alloys. K2TiF6 starts to be reduced by aluminium as early as 220 °C when ball-milled Al/K2TiF6/KBF4 powder blends are heated. The reaction of KBF4 with aluminium follows soon after. The Ti and B thus produced are both solutionized in aluminium before precipitating out as Al3Ti and TiB2. All these reactions take place below the melting point of aluminium. The ball-milled Al/K2TiF6/KBF4 powder blends heat treated at approximately 525 °C can be compacted to produce Al–Ti–B pellets with in situ formed Al3Ti and TiB2 particles. These pellets are shown to be adequate grain refiners for aluminium alloys.  相似文献   

11.
Grain growth behaviors of the two AZ31 alloy sheets processed by slab- and strip-casting methods were examined and compared. Grain growth rate of the strip-casting processed AZ31 alloy was considerably lower than that of the slab-casting processed AZ31 alloy. The result could be ascribed to the presence of finer Al–Mn compound particles more uniformly and densely distributed in matrix of the strip-casting alloy. Low grain growth rate via effective Zener pinning of the Al–Mn particles notably improved tensile ductility of the AZ31 alloy at elevated temperatures.  相似文献   

12.
Thermodynamic analysis of three binary Ti-based alloys: Ti–Al, Ti–V, and Al–V, as well as ternary alloy Ti–Al–V, is shown in this paper. Thermodynamic analysis involved thermodynamic determination of activities, coefficient of activities, partial and integral values for enthalpies and Gibbs energies of mixing and excess energies at four different temperatures: 2000, 2073, 2200 and 2273 K, as well as calculated phase diagrams for the investigated binary and ternary systems. The FactSage is used for all thermodynamic calculations.  相似文献   

13.
The mechanism underlying the grain refinement of cast aluminium by zirconium has been studied through examination of a range of Al alloys with increasing Zr contents. Pro-peritectic Al3Zr particles are reproducibly identified at or near the grain centres in grain-refined alloy samples based on the observations of optical microscopy, scanning electron microscopy and X-ray diffraction. From the crystallographic study using the edge-to-edge matching model, electron backscatter diffraction and transmission electron microscopy, it is substantiated that the Al3Zr particles are highly potent nucleants for Al. In addition, the effects of Al3Zr particle size and distribution on grain refinement has also been investigated. It has been found that the active Al3Zr particles are bigger than previously reported other types of active particles, such as TiB2 for heterogeneous nucleation in Al alloys. Considering the low growth restriction effect of Zr in Al (the maximum Q-value of Zr in Al is 1.0 K), it is suggested that the significant grain refinement of Al resulting from the addition of Zr can be mainly attributed to the heterogeneous nucleation facilitated by the in situ formed Al3Zr particles.  相似文献   

14.
15.
16.
Superplastic properties and formability of the AZ31 sheet processed by strip casting and subsequent warm rolling were examined. Microstructure of the AZ31 sheet with thickness of 1.3 mm was uniform and composed of equiaxed grains with an average size of 6.6 μm. The sheet exhibited excellent superplasticity with a maximum elongation of 800% at 673 K and 2 × 10−4 s−1. A 250 mm × 250 mm size panel with complicated embossing patterns could be successfully formed into near net shape by gas pressure against a single female die. Small grain size and slow grain growth during deformation resulted in the superior superplastic properties at 673 K. The governing deformation mechanisms in any given strain-rate and temperature ranges could be predicted by the deformation mechanism maps for Mg–Al–Zn alloys.  相似文献   

17.
采用铸锭冶金法制备了Ti,Zr单独及复合微合金化的铝合金,采用OM、SEM、EDS及XRD等手段,研究并对比了Ti,Zr单独及复合添加时对合金晶粒的细化作用及在不同保温时间下对合金抗晶粒细化衰退性能的影响。结果表明,Ti,Zr复合添加时的晶粒细化效果比等量的Zr或Ti更加优异,且对合金晶粒细化衰退的抑制作用更加显著,当Al-0.15Zr-0.15Ti合金熔体的保温时间长达110 min时,合金仍保持着良好的晶粒细化作用。  相似文献   

18.
A new technique to achieve sound semi-solid slurry by introducing angular oscillation during the earlier stage of solidification is reported. The effects of melt superheat and oscillation intensity on the grain refinement and morphology of primary Al particles in aluminum alloy A356 were investigated. Results confirmed that a fully grain refined and non-dendritic microstructure could be obtained using proper processing conditions, and the superheat of melt could be increased to a higher level. The primary Al particle had average diameter of 58 μm and average shape factor of 0.84, and featured zero entrapped eutectic.  相似文献   

19.
20.
This work is focused on the combined study of the evolution of tool wear, quality of machined holes and surface integrity of work-piece, in the dry drilling of alloy Ti–6Al–4V. Tool wear was studied with optical microscope and SEM–EDS techniques. The quality of machined holes was estimated in terms of geometrical accuracy and burr formation. Surface integrity involves the study of surface roughness, metallurgical alterations and microhardness tests. The end of tool life was reached because of catastrophic failure of the drill, but no significant progressive wear in cutting zone was observed previously. High hole quality was observed even near tool catastrophic failure, evaluated from the point of view of dimensions, surface roughness and burr height. However, microhardness measurements and SEM–EDS analysis of work-piece showed important microstructural changes related with a loss of mechanical properties. Depending on the application of the machined component, the state of the work-piece could be more restrictive than the tool wear, and the end of tool life should be established from the point of view of controlled damage in a work-piece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号