首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in soil pH, exchangeable aluminium (Al), calcium (Ca), magnesium (Mg), and potassium (K) and extractable manganese (Mn) were investigated after urea fertigation of a sandy loam soil in an apple orchard in New Zealand. Urea at three rates (0, 25, 50 kg N ha–1 yr–1 or 0, 16.9, 33.8 g N emitter–1 yr–1) was applied in 4 equal fertigations. Soil cores at 4 profile depths (0–10, 10–20, 20–40 and 40–60 cm) directly below and 20 cm from the emitter were sampled approximately 4 weeks after each fertigation and in the following winter. Results obtained showed that the largest changes in soil pH and cations occurred in soils directly below the emitter in the 50 kg N ha–1 yr–1 treatment where the soil pH decreased by 1.6 pH units at all soil depths. The lowest pH of 4.3 was observed at a depth of 27 cm. Exchangeable Al and extractable Mn levels increased to 11 meq kg–1 and 78µg g–1 respectively. Estimated losses of Ca, Mg and K from the upper soil profile depth (0–10 cm) represented 23, 63 and 27% of their respective total exchangeable levels. At lower profile depths (>20 cm), accumulation of displaced K was evident. Variable, and generally non-significant, chemical changes recorded in soils 20 cm from the emitter were attributed to restricted lateral water movement, and therefore urea movement, down the profile.The present study showed that one season of urea fertigation by trickle emitters, applied to a sandy loam, at half the rate conventionally applied to apple orchards (50 kg N ha–1 yr–1) resulted in pH and mineral element imbalances which were potentially and sufficiently severe to inhibit tree growth.  相似文献   

2.
Accounting for agricultural activities such as P fertilization in regional models of heavy metal accumulation provides suitable sustainable management strategies to reduce nutrient surpluses and metal inputs in agricultural soils. Using the balance model PROTERRA-S, we assessed the phosphorus (P), cadmium (Cd) and zinc (Zn) flux balances in agricultural soils of a rural region in Switzerland for different farm types and crop types. The P requirements of crops on arable farms were mainly supplied by commercial fertilizers and sewage sludge, while on animal husbandry farms P fertilizer demands were met by animal manure alone. Metal accumulation in soil was very different between the balance units. Estimated net Cd fluxes ranged between 1.0 and 2.3 g ha–1 yr–1 for arable farm types, 0.6 and 2.0 g ha–1 yr–1 for dairy and mixed farm types, and 9.1 and 17.8 g ha–1 yr–1 for animal husbandry farm types. Largest net Zn fluxes of 17.9–39.8 kg ha–1 yr–1 were estimated for animal husbandry farms, whereas for arable farm types net Zn fluxes of 101–260 g ha–1 yr–1 and for dairy and mixed farm types of 349–3360 g ha–1 yr–1 were found. The results indicate that P management is a primary factor determining the variation of these net Cd and net Zn fluxes. The latter were highly sensitive to the Zn/P concentration ratio in animal manure, atmospheric deposition and crop concentrations. Variation of net Cd fluxes resulted mainly from uncertainty in crop concentrations, atmospheric deposition, leaching parameters and uncertainty in Cd/P concentration ratio of commercial fertilizers. In addition, element balances were sensitive to empirical assumptions on fertilization strategy of farmers, such as the partitioning of manure between balance units.  相似文献   

3.
Peach palm (Bactris gasipaes Kunth) is increasingly grown in the tropics for its heart-of-palm and fruit. Determining fertilization response and diagnosing nutrient status in peach palm may require methods that consider the particularities in nutrient acquisition and recycling of perennial crops. Responses to nutrient additions, and the diagnostic value of soil and foliar analyses were examined in three field experiments with three-year old peach palm stands on Oxisols in Central Amazonia. To diagnose P-deficiency levels in soils, samples from 0–5 cm and 5–20 cm depth were analyzed for available P by different methods (Mehlich-1, Mehlich-3 and Modified Olsen). The second and fifth leaves were analyzed to assess N, P and K deficiencies. Field experiments involved several combinations of N (from 0 to 225 kg ha–1 yr–1), K (from 0 to 225 kg ha–1 yr–1) and P (from 0 to 59 kg ha–1 yr–1). Palms on control plots (unfertilized) and those receiving 225 kg ha–1 yr–1 N and 2 Mg ha–1 of lime yielded between 4 and 19% of the maximum growth which was obtained with N, P and K applications. In one of the experiments, yield of heart-of-palm was positively related to N additions at the lowest levels of P (8.6 kg ha–1 yr–1) and K (60 kg ha–1 yr–1) additions. In one experiment, critical leaf N level was 2.5% for the second leaf and 2.2% for the fifth leaf. Some growth responses to P additions at constant N and K levels were observed (e.g., 797 kg ha–1 yr–1 of heart-of-palm with 39.3 kg ha–1 yr–1 of applied P, and 632 kg ha–1 yr–1 of heart-of-palm with 10.9 kg ha–1 yr–1 of applied P in one experiment, and 2334 kg ha–1 yr–1 of heart-of-palm with 39.3 kg ha–1 yr–1 of P and 1257 kg ha–1 yr–1 of heart-of-palm with 19.7 kg ha–1 yr–1 of P in another trial). In the experiment for fruit production from peach palm, total plant height did not respond to P additions between 19.7 and 59 kg ha–1 yr–1 and K additions between 75 and 225 kg ha–1 yr–1. Leaf P levels were found to be above the proposed critical levels of 0.23% for the third leaf and 0.16% for the fifth leaf. Plants in this experiment, however, showed evident symptoms of Mg deficiency, which was associated with a steep gradient of increasing Mg concentration from the fifth leaf to the second leaf. Standard leaf diagnostic methods in most cases proved less useful to show plant N and P status and growth responses to N and P additions. Soil P determined by common extractions was in general too variable for prediction of growth.  相似文献   

4.
The major processes involved in acidification of soils under intensively managed grassland are the transformation and subsequent leaching of applied nitrogen (N), assimilation of excess cations in herbage and acidic atmospheric deposition. Carbonates from fertilizers and excess cations in purchased concentrates are the most important proton (H+) neutralizing agents applied to grassland. In this study, the effects of grazing, cutting and N application on the net proton loading from each of the main processes were calculated, using a simple model.On mown swards, simulated excess cation uptake by the sward released 4.5–9.3 kmolc H+ ha–1 yr–1. The total proton loading on mown grassland decreased from about 8.0 to 5.3 kmolc ha–1 yr–1 when fertilizer N input as CAN-27 increased from 0 to about 400 kg ha–1 yr–1. Contributions from atmospheric deposition ranged from 2.2 kmolc ha–1 yr–1 when herbage yield exceeded 10 Mg ha–1 yr–1 to 3.0 kmolc ha–1 yr–1 when herbage production was only 5.5 Mg ha–1 yr–1.On grazed swards, transformation of organically bound N from urine and dung to nitrate (NO 3 - ) and the subsequent leaching of excess NO 3 - was the main source of protons. Application of 400 kg N ha–1 yr–1 to grazed swards increased the proton loading from transformed N from 3.9 to 16.9 kmolc ha–1 yr–1. The total proton loading on grazed swards exceeded that of mown swards when the input of fertilizer N exceeded 150 kg ha–1 yr–1.Underestimation of the amount of N immobilized in the soil biomass and lost by denitrification may have resulted in a slight overestimation of the amount of N lost by leaching and thereby also the simulated total proton loading.  相似文献   

5.
A multisite field experiment was conducted to study the effect of topdressed Se-enriched Ca(NO3)2 (CN) and basal applied NPK on the selenium (Se) concentration in spring wheat (Triticum aestivum L.). Selenium was applied either through CN (at the rates of 0, 6.45, and 12.91 g Se ha–1) or NPK (5.83 g Se ha–1). Selenium concentration in wheat grains increased consistently with increasing rate of Se-enriched CN or NPK. However, the superiority of Se-enriched CN over NPK in raising the Se concentration in wheat grain depended on location and growth conditions. At the same rate both methods of Se-application were found to be equally effective in raising the Se concentration of wheat grains. The Se concentration of grain was generally higher in the light textured soils than in the medium to heavy textured soils. Without Se application, the Se-concentration in wheat grain was about 16µg kg–1 which is regarded insufficient to meet the Se requirement for Se in animal and human. Calcium nitrate enriched with 25 mg Se kg–1 (6.45 g Se ha–1) increased the Se concentration in wheat grain to a desired level.  相似文献   

6.
Cadmium (Cd), a potentially toxic heavy metal for humans and animals, accumulates in the liver and kidneys of older animals grazing New Zealand and Australian pastoral soils. Phosphorus (P) fertiliser is the major input of Cd into these farming systems. A study was conducted to evaluate the effects, over 10 years, of annual application (30 kg P ha–1 yr–1) of four forms of P fertilisers having different solubilities and Cd contents [41, 32, 10 and 5 g Cd g–1 for North Carolina phosphate rock (NCPR), single superphosphate (SSP), diammonium phosphate (DAP) made from low Cd phosphate rocks and Jordan phosphate rock (JPR) respectively] on soil and herbage Cd concentrations. Ten years of fertiliser application caused a marked increase in surface soil Cd concentrations. Total soil Cd was significantly higher in SSP and NCPR treatments compared to control (no P fertiliser), JPR and DAP treatments in the 0–30 and 30–75 mm soil depths. Plant-available Cd (0.01 M CaCl2 extractable Cd) was higher in SSP treatments than in control and other fertiliser treatments. Chemical analysis of herbage samples showed that there was no significant difference in Cd concentration in pasture grasses between treatments in the second year of the trial but in the eighth and tenth year, plots fertilised with SSP and NCPR had significantly higher Cd in pasture grasses in most of the seasonal cuts compared to control, JPR and DAP. Cadmium recovery by both grasses and clover was less than 5% of Cd applied in fertiliser. Clover Cd concentration and yield were much lower than those for grass and therefore its contribution to pasture Cd uptake was very low (< 7%). A strong seasonal effect on grass Cd concentration, which is inversely related to pasture growth rate, was observed in all three sampling years — Cd concentration was highest during autumn and lowest in spring. Total Cd contents of the fertilisers and their rate of dissolution rather than soil pH [pH (H2O) at 30–75 mm depth of 5.39, 5.20, 5.11 and 5.36 for NCPR, SSP, DAP and JPR treatments respectively]influenced soil and herbage Cd. These results showed that the use of P fertilisers with low Cd contents will reduce herbage Cd levels and has the potential of reducing Cd levels in grazing animals and their products.  相似文献   

7.
Changes in quantity of soil mineral nitrogen down to a depth of 1 m in cloverfree grassland were monitored within one growing season and over successive growing seasons. Accumulation of mineral nitrogen in the soil occurred on permanent grassland with split application of nitrogen totalling more than 400 kg N ha–1 yr–1 and on young grassland, sown after arable crops, with applications of more than 480 kg N ha–1 yr–1. The relationship between the rate of nitrogen application minus nitrogen uptake, and accumulation of mineral nitrogen in the upper 50 cm of soil during each growing season is described.  相似文献   

8.
Effects of crop rotation and fertilization (nitrogen and manure) on concentrations of soil organic carbon (SOC) and total soil nitrogen (TSN) in bulk soil and in soil aggregates were investigated in a long-term field experiment established in 1953 at Ås, Norway. The effect of these management practices on SOC sequestration was estimated. The experiment had three six-course rotations: (I) continuous spring grain, (II) spring grain for 3 years followed by root crops for 3 years, and (III) spring grain for 2 years followed by meadow for 4 years. Three fertilizer treatments compared were: (A) 30–40 kg N ha–1; (B) 80–120 kg N ha–1; and (C) a combination of B and 60 Mg farmyard manure (FYM) ha–1. All plots received a basal rate of PK fertilizer. Soil samples from these treatments were collected in autumn 2001 and analyzed for aggregate size, SOC and TSN concentrations. There were significant increases in 0.6–2 mm and < 0.6 mm aggregate size fractions, and reduction in the 6–20 mm and the > 20 mm sizes for rotation III only. There were also significant differences among rotations with regard to water stable aggregation. The order of increase in stability was II < I < III. Fertilizer treatment had no effect on aggregation or aggregate size distribution, but there was a slight tendency of increased stability with the application of FYM. Aggregate stability increased with increasing concentration of SOC (r2 = 0.53). The SOC and TSN concentrations in bulk soil were significantly higher in rotation III than in rotations II and I. Application of FYM increased SOC and TSN concentrations significantly in the 0–10 cm soil depth, but there were few significant differences between fertility treatments A and B. There was a trend of increase in concentration of SOC and TSN with decreasing aggregate size, but significant differences in these parameters in different aggregate size fractions were found only in few cases. The SOC and TSN concentrations were higher in >0.25 mm than in < 0.25 mm aggregates. The SOC sequestration rate was 77–167 kg SOC ha–1 yr–1 by increasing the N rate and 40–162 kg SOC ha–1 yr–1 by applying FYM. The SOC sequestration rate by judicious use of inorganic fertilizer was the greatest in the grain–meadow rotation, while that by application of FYM was the greatest in the all grain rotation.  相似文献   

9.
Liming costs have escalated since the mid 1970's in the United States. Studies of crop response to lime with irrigation are limited as well as those of crop response to soil acidifying agents. This study was conducted to determine yield response of irrigated soybean [Glycine max (L.) Merrill], corn (Zea mays L.), and wheat (Triticum aestivum L.) to lime and S and the change in soil pH, in response to lime and S. Irrigated soybean, corn, and wheat were grown on Dothan and Tifton loamy fine sand (Plinthic Acrisols) with different levels of calcite, dolomite, and S. Soil samples were collected before applying treatments and during each growing season. Soil pH and Mehlich I extractable P, K, Ca, and Mg in addition to grain yield of each crop were determined. Highest soybean yield (4.2 t ha–1) occurred in 1984 at a soil pH of 4.9 (1:1 v/v soil—water suspension) while the yield was zero at a pH of 3.7 on S treated plots. A soil pH of 4.8 in 1985 reduced soybean yield from 3.4 to 2.7 t ha–1 in comparison to untreated plots (pH = 5.6). In 1986, soybean yield was 0.8 t ha–1 at pH 4.0 in comparison to 2.3 t ha–1 at pH 5.1 and 5.9. Corn did not respond to lime with control pH of 5.3 in 1985 or 5.1 in 1986 but S at pH 4.6 reduced yield from 12.3 to 8.7 t ha–1 in 1985 and S reduced yield from 11.0 to 0.9 t ha–1 at pH 4.0 in 1986. Sulfur reduced wheat yield from 4.3 to 1.7 t ha–1 in 1985 and from 2.2 to 0.9 t ha–1 in 1987. Soil pH after cropping with S addition was 4.4 each year. Wheat did not respond to lime when unlimed soil had a pH of 5.2 or above.  相似文献   

10.
A survey on current fertilizer practices and their effects on soil fertility and soil salinity was conducted from 1996 to 2000 in Beijing Province, a major vegetable production area in the North China Plain. Inputs of the major nutrients (NPK) and fertilizer application methods and sources for different vegetable species and field conditions were evaluated. Excessive N and P fertilizer application, often up to about 5 times the crop requirement in the case of N, was very common, especially for high-value crops. Potassium supply may have been inadequate for some crops such as leafy vegetables. Urea, diammonium orthophosphate ((NH4)2HPO4) and chicken manure were the major nutrient sources for vegetable production in the region. Over 50% of N, 60% of P and nearly 90% of K applied originated from organic manure. Total N application rate for open-field Chinese cabbage from organic manure and inorganic fertilizers ranged from 300 to 900 kg N ha–1 on 78% of the farms surveyed. More than 35% of the surveyed greenhouse-grown tomato crops received > 1000 kg N ha–1 from organic and inorganic sources. A negative K balance (applied K minus K removed by the crop) was found in two-thirds of the surveyed fields of open-field Chinese cabbage and half of the surveyed fields of greenhouse-grown tomato. Plant-available N, P and K increased with increasing length of the period the greenhouse soils had been used for vegetable production. Similarly, soil salinity increased more in greenhouse soils than in open-field soils. The results indicate that balanced NPK fertilizer use and maintenance of soil quality are important for the development of sustainable vegetable production systems in this region.  相似文献   

11.
The transfers of native and applied K in a rhodic Ferralsol were studied in an agrosystem of southern Togo to propose sustainable cultivation strategies for K in kaolinitic soils. Potassium balance was measured over two years in field conditions under continuous maize cultivation with two K fertilisation levels (0 and 137 kg K ha–1 yr–1). Postassium leaching below the root zone, determined using ceramic cup samplers and Darcy's law, was on average 7.5 kg K ha–1 yr–1 with K fertilisation, i.e. 2% of the quantity of K applied, and 4.5 kg K ha–1 yr–1 without. The low leaching values resulted from a K concentration lower than 130 M in the soil solution. The low K concentration in the soil solution was related to selective adsorption of K increased by a low content of exchangeable K, with a Gapon selectivity coefficient ranging from 7.9 and 11.5 M –0.5. So the level of exchangeable K must first be increased to raise K concentration in the soil solution. The fixation and release of K was analysed using the isotopic exchange method with 42K-ions and compartmental analysis of the kinetics of isotopic exchange. Potassium fixed in a form non available within one year accounted for 78% of the difference between the two treatments. The annual amount of K fertilisation must thus be based on the quantity of K removed in the grain and crop residues, with an extra addition to account for K fixation. Given a crop residue content of 85 kg K ha–1 yr–1 in the fertilised treatment, the return of crop residues is essential if sustainability is to be achieved with traditional cropping systems where little K fertiliser is added.  相似文献   

12.
There is much current interest in the potential role of agroforestry in the mitigation of nutrient depletion in Sub-Saharan Africa. Using data from farm surveys and trials, a static model of N and P flows was constructed for a standard farm system, representative of typical subsistence farms in humid parts of the East African Highlands. The model was used to explore the possible impact of improved agroforestry systems on nutrient budgets, to identify priorities for research.Soil nutrient balances in the standard farm system were - 107 kg N and - 8 kg P ha–1 yr–1. Agroforestry systems did not significantly reduce the N deficits except when a high proportion of the total biomass was returned to the soil, rather than removed from the farm. Agroforestry increased N input through biological N fixation and deep N uptake, but this was offset by a larger nutrient removal from the farm in harvested products, which increased from 38 kg N in the standard system to 169 kg N ha–1 yr–1 in an intensive dairy-agroforestry system. Agroforestry did not increase P inputs, and harvested P increased from 6 kg P in the standard farm system to 29 kg P ha–1 yr–1 in the dairy-agroforestry system. Thus, moderate P inputs, of 20 kg P ha–1 yr–1 were required to maintain soil P stocks.N leaching from the field was the most significant nutrient loss from the farm system, with a range of 68 to 139 kg N ha–1 yr–1. The capture of subsoil N by deep-rooted trees in agroforestry systems substantially increased N-use efficiency, providing 60 kg N ha–1 yr–1 in the dairy-agroforestry system. The budgets were sensitive to N mineralization rates in subsoils, N losses from soils and manures, and effectiveness of deep-rooted plants in subsoil N capture, for which there is little data from the region. Therefore, high priority should be given to research in these areas.The current model can not account for important feedback mechanisms that would allow analysis of the long-term effects of nutrient budgets on nutrient availability and plant productivity. Dynamic models of farm nutrient budgets that include such interactions are needed to further assess the sustainability of farming systems.  相似文献   

13.
Field trials were conducted at Samaru over a three-year period (1980–82) to study the yield, growth and nutrient concentration of three grain sorghum varieties (L. 187, SK5912 and FFBL) in relation to potassium fertilization in a savanna soil. Potassium application rates were 0, 25, 50 and 75 kg K ha–1. Year × potassium interactions were not significant although there were significant variety × K interactions. The highest grain yields for var. L.187, SK5912 and FFBL occurred from the application of 25, 50 and 75 kg K ha–1 respectively. Straw yield was generally increased by K application, which also promoted tillering and hastened flowering in grain sorghum. Although grain weight per head, head number per m2, grain number and 1000-grain weight were unaffected by this nutrient, weight per head was reduced by 22.8 per cent. K application enhanced N concentration of sorghum plants but caused decline in P concentration. The highest K rate gave the highest K concentration in each of the three varieties at 7 weeks after planting. Optimum K requirement of grain sorghum would seem to be between 25 and 50 kg K ha–1.  相似文献   

14.
Cadmium (Cd) has accumulated in many agricultural soils in Australia due to fertilization with phosphatic fertilizers that contained Cd as an impurity. Nine field and seven glasshouse experiments using light-textured soils were conducted to investigate the effect of current-season applications of calcitic lime on i) soil pHw, ii) tuber yield, and iii) Cd accumulation in tubers of a range of processing (Russet Burbank, Atlantic, Shepody and Kennebec) and fresh market (Crystal, Pontiac and Desiree) potato cultivars.Liming increased soil pH values by up to 2 units. Yields of potato tubers were generally unaffected by liming. Under glasshouse conditions, significant reductions in tuber Cd concentrations were found after liming of soils. In contrast, in the field, application of calcitic lime at rates up to 20 t ha–1 had either no effect or significantly (p<0.05) increased tuber Cd concentrations. Concentrations of Cd in tubers were closely correlated (R2=0.74,p<0.001) with concentrations of chloride (Cl). The lack of any beneficial effect of lime application in reducing tuber Cd concentrations under field conditions is attributed to a combination of ineffective mixing of lime throughout the whole root zone, inadequate time of reaction of lime with soil, competitive desorption of Cd2+ by Ca2+ and low soil moisture inhibiting lime dissolution under field conditions. Further work is required to resolve which mechanisms are most important.  相似文献   

15.
Peach palm (Bactris gasipaes Kunth) is a relatively new food crop with great potential for the humid tropics. Native to tropical America, it is commercially grown to produce hearts-of-palm and, to a lesser extent, an edible fruit. Peach palm is well adapted to nutrient poor, acid soils, and is cultivated in Brazil and Costa Rica on highly weathered soils with low pH, high aluminum saturation and, often, low organic matter content. Fertilization trials on peach palm have shown significant responses to applied nitrogen while the response to other nutrients such as phosphorus has been less frequent. Additional research, however, is necessary to determine soil and foliar nutrient critical levels and to address questions concerning peach palm growth responses to nutrient additions varying in time and space. Recycled nutrients likely contribute significantly to peach palm nutrition because plant residues are produced in considerable amounts and can decompose rapidly in commercial peach palm plantation in humid environments where cut leaves and stems are left in the field following harvest. On the other hand, nutrient exports from the system are relatively small (e.g., 4.8–6.4 kg P ha-1yr-1, 28–32.3 kg N ha-1 yr-1, 31–45.2 kg K ha-1 yr-1). As for most perennial tree crops, diagnosis of nutrient deficiencies in peach palm is less clear than in annual crops because of factors such as nutrient cycling, internal retranslocation, stand age, foliage age and position within the crown, and seasonal and climatic variations. Some studies on peach palm have examined variation in nutrient content within leaves and plants, and among plants as well, but the sensitivity of different plant tissues to reflect changes in nutrient uptake and response to nutrient additions should be investigated in controlled field experiments.  相似文献   

16.
Experiments were conducted on sandy loam soils of Tirupati campus of Andhra Pradesh Agricultural University for two rainy seaons of 1980 and 1981 to study the effect of split application of NPK fertilizers on Spanish bunch groundnut. The fertilizer doses were 40 N, 20 P and 40 K kg ha–1 in 1980 and 30 N, 10 P and 25 K kg ha–1 in 1981.In 1980, uptake of N (48 kg ha–1), P (7 kg ha–1) and K (37 kg ha–1) was maximum with the application of 10 N, 5 P and entire 40 K kg ha–1 as basal and 30 N and 15 P kg ha–1 at 30 days after sowing, leading to highest pod yield (0.76 t ha–1). In 1981, application of 20 N, 10 P and 25 K kg ha–1 as basal dose and 20 N kg ha–1 at 30 days after seeding resulted in highest uptake of N (114 kg ha–1), P (17 kg ha–1) and K (58 kg ha–1) and hence the pod yield (2.36 t ha–1).Differences in the uptake of NPK and pod yield in 1980 and 1981 was due to variation in total rainfall and its distribution during the crop period. Rainfall was equally distributed throughout the crop period in 1981, whereas there were two prolonged dry spells of more than 40 days in 1980.  相似文献   

17.
In some areas of southern Australia, cadmium (Cd) concentrations in excess of the Australian maximum permitted concentration (0.05 mg kg–1 fresh weight) have been found in tubers of commercially grown potato (Solanum tuberosum L.) crops. Field experiments were therefore conducted in various regions of Australia to determine if Cd uptake by potatoes could be minimised by changes in either phosphorus (P), potassium (K) or zinc (Zn) fertilizer management.Changing the chemical form in which either P fertilizer (monoammonium phosphate, diammonium phosphate, single superphosphate and reactive rock phosphate) or K fertilizer (potassium chloride and potassium sulfate) were added to crops had little influence on tuber Cd concentrations. Fertilizer Cd concentrations also had little influence on tuber Cd concentrations, suggesting that residual Cd in the soil was a major contributor to Cd uptake by the crops on these soils.Addition of Zn at planting (up to 100 kg Zn ha–1) significantly reduced tuber Cd concentrations at four of the five sites studied. However, the largest variation was between sites rather than between treatments, with site mean tuber Cd concentrations varying tenfold (from 0.018 to 0.177 mg Cd kg–1 fresh weight). Factors associated with irrigation water quality at the sites, in particular the chloride concentration, appeared to dominate any effects of changing fertilizer type or Cd concentration.  相似文献   

18.
Maintenance and sequestration of C is important to sustain and improve the quality and productivity of soils. The objective of this study was to determine the effects of 27 annual applications of six N rates (0, 56, 112, 168, 224 and 336 kg N ha–1 yr–1) on total organic C (TOC) and light fraction organic C (LFOC) in a thin Black Chernozemic loam soil. Nitrogen (ammonium nitrate) was surface-applied to bromegrass (Bromus inermis Leyss) managed as hay near Crossfield, Alberta, Canada. The concentration and mass of TOC and LFOC in the 0–5, 5–10, 10–15 and 15–30 cm soil layers increased with N rate and showed a quadratic response to N rate with significant R2 values, with their maximum values at 336 kg N ha–1 in the 0–5 cm layer and at 224 kg N ha–1 in other layers. But the increase in TOC and LFOC per kg of N addition was maximized at 56 kg N ha–1 and declined with further increase in N rate. These trends indicated that higher N rates would cause a faster build up of soil C, whereas lower N rates would achieve a greater increase in soil C per unit of N addition. Response of C mass to N application was much greater for LFOC (range of 697 to 156% increase) than for TOC (range of 67 to 17% increase). Percentage of LFOC in TOC mass increased with N rate. At the 168 to 336 kg N ha–1 rates, almost all of the increase in TOC in the surface 10 cm soil occurred as LFOC. Thus, LFOC was more responsive to N application and was a good indicator of N effect on soil C. The trend of change in soil TOC and LFOC was similar to hay yield and C removal in hay, which suggests that increasing hay yield with N application concurrently also increases soil organic C. In conclusion, long-term annual applications of N fertilizer to bromegrass resulted in a substantial increase in TOC and LFOC in the soil, thereby indicating that N fertilization can be used to sequester more atmospheric C in prairie grassland soils.  相似文献   

19.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

20.
Distribution and accumulation of NO3—N, down to 210 cm depth, in the soil profile of a long term fertilizer experiment were studied after 16 cycles of cropping (maize-wheat-fodder cowpea). The application of fertilizer N without P and K or in combination with only P resulted in higher NO3—N concentration in the soil profile than the application of N with P and K. With an annual application of 320 kg N ha–1 alone, a peak in NO3—N accumulation occurred at 135 cm soil depth. However, with the application of NPK, no peak in NO3—N distribution was discernible and its content at most of the sampling depths was either less than or equal to N and NP treatments. The annual application of 10 tons farm yard manure (FYM) per ha along with NPK resulted in a relatively lower NO3—N content in the sub soil. The amount of NO3—N accumulation in the soil profile decreased as the cumulative N uptake by the crops increased. Application of fertilizer amounts greater than that of the recommended (100% NPK) resulted in low percent N recoveries in crops and greater NO3—N accumulation in the soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号