首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated cod (Gadus morhua) brain microtubules were found to have a broad temperature interval for assembly. In contrast to mammalian microtubules they assembled even at as low temperatures as 14 degrees C. Evidence was found that temperature alters the dependency of microtubule-associated proteins (MAPs) for assembly. The assembly was MAPs-dependent at low, but not at higher temperatures. Assembly at +18 degrees C was inhibited by both NaCl and estramustine phosphate. These compounds are well known to inhibit the binding of MAPs to tubulin. At higher temperatures there was no MAPs dependency for assembly, despite that MAPs bound to the microtubules. Cow MAPs had the same effect as cod MAPs, suggesting that despite differences in MAP composition, the effect is not caused by the unusual composition of cod MAPs. The results therefore suggest that these differences in MAPs dependency are due to intrinsic properties of cod tubulin or tubulin-to-tubulin interactions. Small temperature-induced conformational changes of tubulin and a slight enrichment of acetylated and detyrosinated tubulin in microtubules assembled at +30 degrees C as compared to +15 degrees C, were observed. The ability to alter the assembly stimulating effect of MAPs may be important for the cell to regulate microtubule dynamics and stability. In addition, changes in tubulin conformation and composition of tubulin isoforms may reflect adaptations for microtubule assembly at low temperatures.  相似文献   

2.
Zinc ion-induced assembly of tubulin   总被引:2,自引:0,他引:2  
Zinc ion-induced assembly of tubulin was followed using electron microscopy and turbidimetric measurements. A scheme utilizing repeated cycles of assembly and disassembly was used to prepare tubulin and microtubule-associated proteins (MAPs) (Shelanski, M. L., Gaskin, F., and Cantor, C. R. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 765-768). Tubulin was further purified by phosphocellulose chromatography to remove the MAPs (Weingarten, M., Lockwood, A. H., Hwo, S-Y, and Kirschner, M. W. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 1858-1862). In tubulin preparations containing MAPs and added GTP, Zn2+-induced sheets of 15 to 60 protofilaments oriented in parallel. In the absence of MAPs and/or added GTP, Zn2+ induced the formation of sheets which wrapped quite specifically and serial sections were often consistent with a tubular structure of approximately 220 nm. The assembly of recycled tubulin + GTP and 0 to 1 mM Zn2+ was analyzed by A350 as a function of time at 30 degrees. The greater the concentration of Zn2+, the shorter the lag time, the faster the rate after the lag, and the greater the plateau value of A350. Although turbidimetric measurements can be used to quantitate microtubules, they are not quantitative for Zn2+-induced sheets.  相似文献   

3.
A method for biochemically isolating microtubule-associated proteins (MAPs) from the detergent-extracted cytoskeletons of carrot suspension cells has been devised. The advantage of cytoskeletons is that filamentous proteins are enriched and separated from vacuolar contents. Depolymerization of cytoskeletal microtubules with calcium at 4 degrees C releases MAPs which are then isolated by association with taxol stabilized neurotubules. Stripped from microtubules (MTs) by salt, then dialysed, the resulting fraction contains a limited number of high molecular weight proteins. Turbidimetric assays demonstrate that this MAP fraction stimulates polymerization of tubulin at concentrations at which it does not self-assemble. By adding it to rhodamine-conjugated tubulin, the fraction can be seen to form radiating arrays of long filaments, unlike MTs induced by taxol. In the electron microscope, these arrays are seen to be composed of mainly single microtubules. Blot-affinity purified antibodies confirm that two of the proteins decorate cellular microtubules and fulfil the criteria for MAPs. Antibodies to an antigenically related triplet of proteins about 60-68 kDa (MAP 65) stain interphase, preprophase band, spindle and phragmoplast microtubules. Antibodies to the 120 kDa MAP also stain all of the MT arrays but labelling of the cortical MTs is more punctate and, unlike anti-MAP 65, the nuclear periphery is also stained. Both the anti-65 kDa and the anti-120 kDa antibodies stain cortical MTs in detergent-extracted, substrate-attached plasma membrane disks ('footprints'). Since the 120 kDa protein is detected at two surfaces (nucleus and plasma membrane) known to support MT growth in plants, it is hypothesized that it may function there in the attachment or nucleation of MTs.  相似文献   

4.
To examine the role of cytoskeletons in cellular morphogenesis, we generated liposomes encapsulating tubulin, with or without microtubule-associated proteins (MAPs), and observed their transformation using dark-field microscopy. When tubulin was polymerized with MAPs in liposomes, liposomes were transformed into a "bipolar" shape with a central sphere and two tubular membrane protrusions that aligned in a straight line. On the other hand, when pure tubulin was polymerized in liposomes without MAPs, they initially transformed into a bipolar shape but subsequently re-transformed into a "monopolar" shape, i.e. a sphere with only one straight tubular portion. This re-transformation occurred in two ways: first, by shortening of one of the tubular portions due to microtubule disassembly; or second, by fluctuation of the central sphere toward one of the ends without shortening of the tube portion. MAPs prevented this re-transformation, and their role in stabilizing the shape of transformed liposomes was studied by the co-sedimentation method. The results show that MAPs, particularly MAP1 and MAP2, mediate binding between microtubules and the liposomal membrane. However, MAP2 by itself did not bind to liposomes, but was able to stabilize bipolar liposomes. This stabilization is caused not only by direct links between microtubules and liposomes, but also by prevention of Brownian motion of microtubules through an increase in friction.  相似文献   

5.
The exchangeable nucleotide-binding site of tubulin has been studied using diastereoisomers A (Sp) and B (Rp) of guanosine 5'-O-(1-thiotriphosphate) (GTP alpha S) in which the phosphorus atom to which sulfur is attached is chiral. GTP alpha S(A) (10 microM) nucleated assembly of purified tubulin (20 microM) into microtubules in buffer containing 0.1 M 2-(N-morpholino)ethanesulfonic acid with 3 mM Mg2+ and 1 mM EGTA, pH 6.6 at 37 degrees C. With 0.2 mM GTP alpha S(A), the critical concentration (Cc; minimum protein concentration required for assembly) was 8 microM tubulin. Neither 0.2 mM GTP nor GTP alpha S(B) promoted microtubule assembly in buffer with 0.5-6.75 mM Mg2+ and 20-70 microM tubulin. The Cc values for GTP alpha S-(A)-induced assembly of tubulin in buffer with 30% glycerol and of microtubule protein (tubulin and microtubule-associated proteins) in buffer were lower than for GTP. GTP alpha S(A)-induced microtubules were more stable to the cold and to Ca2+. GTP alpha S(A) and GTP but not GTP alpha S(B) bound tightly to tubulin at 4 degrees C. Although GTP alpha S(B) did not nucleate assembly, it did bind to tubulin since it was incorporated into the growing microtubule. Both isomers were hydrolyzed in the microtubules. These studies show that GTP alpha S(A) promotes tubulin assembly better than GTP and GTP alpha S(B) and that there is stereoselectivity at the alpha-phosphate binding region of tubulin. The stereoselectivity may be due to different MgGTP alpha S(A) and -(B) interactions with tubulin.  相似文献   

6.
Incubation of adenovirus type 2 infected cells at 42 degrees C resulted in an inhibition of assembly of virus particles although all the major viral structural polypeptides and virus-induced cellular polypeptides so far identified were detected by electrophoretic analysis. Selective high salt-acid-urea extraction of low mol. wt. polypeptides revealed the absence of protein VII at 42 degrees C whereas precursor polypeptide P-VII and core protein V were found. Pulse-chase and temperature shift experiments indicated that cleavage of P-VII into VII was a reversible thermosensitive process, requiring de novo protein synthesis after shift-down to 37 degrees C. Virus particles assembled at 37 degrees C after transfer from 42 to 37 degrees C contained both viral DNA and polypeptides pre-labelled during the eclipse phase at 42 degrees C, including core protein VII.  相似文献   

7.
The regulation of microtubule dynamics in vitro by microtubule-associated proteins (MAPs) was examined, using purified porcine MAP1B and MAP2. MAP1B has a significantly smaller effect on the observed critical concentration for microtubule assembly than MAP2. Assembly is faster in the presence of either MAP, and the resulting microtubules are shorter, indicating that nucleation is substantially promoted by the MAPs. Both MAPs stabilise the microtubule lattice as observed from podophyllotoxin-induced disassembly, but the effect of MAP1B is weaker than the effect of MAP2. At steady-state of assembly MAP1B still allows microtubule dynamic instability to occur as inferred from microtubule length changes. The comparison of the effects of MAP1B and MAP2 indicates that the reduction of the observed critical concentration is attributable to the reduction of the depolymerisation rate and correlates with the extent of suppression of dynamic instability. Numerical simulations illustrate that microtubule dynamics are strongly influenced by relatively small changes in the strength of a limited subset of subunit interactions in the lattice. The observed characteristic differences between the MAPs may be important for the regulation of distinct populations of microtubules which coexist in the same cell, where differences in stability and dynamics may be essential for their different spatial roles as, for example, in developing neurons.  相似文献   

8.
Plants can adapt their shape to environmental stimuli. This response is mediated by the reorganization of cortical microtubules, a unique element of the cytoskeleton. However, the molecular base of this response has remained obscure so far. In an attempt to solve this problem, signal-dependent changes in the pattern of microtubule-binding proteins were analysed during coleoptile elongation in maize, that is, under the control of the plant photoreceptor phytochrome. Two putative MAPs of 100 kDa (P100) and 50 kDa apparent molecular weights were identified in cytosolic extracts from non-elongating and elongating cells. Both proteins co-assembled with endogenous tubulin, bound to neurotubules and were immunologically related to the neural MAP tau: the P100 protein, depending on the physiological situation, was manifest as a double band and was always found to be heat-stable. In contrast, the 50 kDa MAP was heat-stable only for particular tissues and physiological treatments. The P100 protein was present in all tissues, however in a reduced amount in elongating coleoptiles. The 50 kDa MAP was expressed exclusively upon induction of phytochrome-dependent cell elongation. As shown by immunofluorescence double-staining, an epitope shared by both proteins colocalized with cortical microtubules in situ, but exclusively in elongating cells. In non-elongating cells, only the nuclei were stained. Partially purified nuclei from elongating cells were enriched in P100, whereas the 50 kDa MAP became enriched in a partially purified plasma membrane fraction.  相似文献   

9.
The colchicine-binding assay was used to quantitate the tubulin concentration in unfertilized Strongylocentrotus purpuratus eggs and to characterize pharmacological properties of this tubulin. Specificity of colchicine binding to tubulin was demonstrated by apparent first-order decay colchicine-binding activity with stabilization by vinblastine sulfate, time and temperature dependence of the reaction, competitive inhibition by podophyllotoxin, and lack of effect of lumicolchicine. The results demonstrate that the minimum tubulin concentration in the unfertilized egg is 2.71 mg per milliliter or 5.0% of the total soluble cell protein. Binding constants and decay rates were determined at six different temperatures between 8 degrees C and 37 degrees C, and the thermodynamic parameters of the reaction were calculated. delta H0=6.6 kcal/mol, delta S0=46.5 eu, and, at 13 degrees C, delta G=-6.7 kcal/mol. The association constants obtained were similar to those of isolated sea urchin egg vinblastine paracrystals (Bryan, J. 1972. Biochemistry. 11:2611-2616) but approximately 10 times lower than that obtained for purified chick embryo brain tubulin at 37 degrees C (Wilson, L.J.R. Bamburg, S.B. Mizel, L. Grisham, and K. Creswell. 1974. Fed Proc. 33:158-166). Therefore, the lower binding constants for colchicine in tubulin-vinblastine paracrystals are not due to the paracrystalline organization of the tubulin, but are properties of the sea urchin egg tubulin itself.  相似文献   

10.
Rat brain tubulin purified by colchicine-agarose affinity chromatography contains protein kinase activity. The kinase activity can be separated completely from tubulin by chromatography on casein columns and is not subsequently retained by colchicine affinity columns. Protein kinase activity associated with purified tubulin does not correlate with the total content of protein kinase activity in brain homogenates, since microtubules isolated from 48 000g fetal brain supernatants contain twice as much protein kinase activity than adult microtubules, although the total protein kinase activity is twice as high in the 48 000g adult supernatant. The protein kinase of tubulin preparations, while corresponding to a different molecule than tubulin, is probably not simply the result of contamination. These observations are interpreted in terms of specific associations between protein kinase and tubulin complexes. The protein kinase-tubulin association may be an important determinant in the regulation of tubulin function. Fetal tubulin polymerizes twice as well as adult tubulin in the absence of glycerol at the same tubulin concentration. The preferred substrate for the protein kinase either in vivo or in vitro (pH 7.4, 37 degrees C) is a specific high-molecular-weight protein, distinct from tubulin, which copurifies with tubulin through different kinds of isolation procedures (i.e., colchicine affinity chromatography and ammonium sulfate precipitation followed by diethylaminoethyl-cellulose chromatography). The tubulin-associated protein kinase is completely dependent on cyclic adenosine monophosphate (Km=10(-7)M), as demonstrated by the complete suppression of activity upon addition of the protein kinase modulator, a well-known specific inhibitor of cAMP-dependent protein kinases  相似文献   

11.
Microtubules were prepared by in vitro polymerization-depolymerization cycles, 1.0 M NaCl which totally depolymerizes was then added to the preparation. After removal of NaCl new arrangements of tubulin were observed at 4 degrees C: simple and double rings as well as fibrils. At 37 degrees these structures disappeared and tubulin polymerized into microtubules. The highly microtubules contain tubulin, tubulin associated proteins of 300,000 and 330,000 molecular weight, minor proteins of low molecular weight and proteins similar to the Tau factors. This raises a question of the role played by low molecular weight polypeptides. Are they products of proteolysis of rather factors of polymerisation?  相似文献   

12.
13.
Initiation of Escherichia coli DNA synthesis primed by homologous recombination is believed to require the phiX174-type primosome, a mobile priming apparatus assembled without the initiator protein DnaA. We show that this primosome plays an essential role in bacteriophage Mu DNA replication by transposition. Upon promoting transfer of Mu ends to target DNA, the Mu transpososome undergoes transition to a pre-replisome that permits initiation of DNA synthesis only in the presence of primosome assembly proteins PriA, DnaT, DnaB and DnaC. These assembly proteins promote the engagement of primase and DNA polymerase III holoenzyme, initiating semi-discontinuous replication preferentially at the Mu left end. The results indicate that these proteins play a crucial role in promoting replisome assembly on a recombination intermediate.  相似文献   

14.
Pieces of olfactory nerve of the bullfrog were extracted in a tubulin assembly buffer medium containing detergents. With incubation at 37 degrees C in such medium containing soluble tubulin, ribbons of protofilaments are formed on the surfaces of microtubules, with the ribbons curving in a clockwise or counterclockwise direction. The direction of hooking reflects the polarity of the microtubule. In nerve pieces oriented such that cross sections could be viewed toward the perikarya of the axons, over 90% of the ribbons on microtubules showed a clockwise orientation. When observers were looking toward the axonal terminals, most ribbons on microtubules showed a counterclockwise direction. In single axons in which ribbons appeared on all the contained microtubules, the ribbons showed a single directionality. The evidence suggests that microtubules in axons have a single polarity, probably reflecting their assembly from the perikarya outward through the axoplasm. If bidirectional transport is assumed in these axons, it is not reflected by the polarity of their microtubules, which may mean that the directionality of transport is provided by components other than microtubules.  相似文献   

15.
Depolymerization of microtubules in the ATP-reassembly buffer permitted the preparation of GDPETNGTP. Incubation of this tubulin fraction at 35 degrees with ATP induced the phosphorylation of E-site GDP into GTP, which was then dephosphorylated during microtubule assembly. Incubation of GDPETNGTP with phosphoenolpyruvate and pyruvate kinase [EC 2.7.1.40] also induced polymerization. Depolymerization of microtubules in the GTP-reassembly buffer yielded GTPETNGTP, which was capable of polymerizing into microtubules even in the absence of free GTP. In the presence of 4 M glycerol, GDPETNGTP assembled into microtubules with no change in the bound nucleotides.  相似文献   

16.
17.
The microtubule-binding domains of microtubule-associated protein (MAP) 2, tau, and MAP4 are divided into three distinctive regions: the Pro-rich region, the AP sequence region and the tail region (Aizawa, H., Emori, Y., Murofushi, H., Kawasaki, H., Sakai., H., and Suzuki, K. (1990) J. Biol. Chem. 265, 13849-13855). Electron microscopic observation showed that the taxol-stabilized microtubules alone and those mixed with the A4T fragment (containing the AP sequence region and the tail region) had a long, wavy appearance, while those mixed with the PA4T fragment (containing the Pro-rich region, the AP sequence region, and the tail region) or the PA4 fragment (containing the Pro-rich region and the AP sequence region) were shorter and straighter. Stoichiometries of the binding between the fragments and the tubulin dimers were approximately between 1 and 2, suggesting that not all of the AP sequences in the AP sequence region bound to tubulin. Binding affinity of the PA4T fragment is only four times higher than that of the A4T fragment, while the microtubule nucleating activity of the PA4T fragment is far greater. Based on these results, we propose that the nucleation of microtubule assembly is promoted by the bridging activity of the Pro-rich region in the MAPs.  相似文献   

18.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

19.
NSC 613862 (S)-(-) and NSC 613863 (R)-(+) are the two chiral isomers of ethyl-5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3, 4-b]pyrazin-7-yl carbamate. Both compounds bind to tubulin in a region that overlaps the colchicine site. They induce formation of abnormal polymers from purified GTP-Mg-tubulin, the active assembly form of tubulin, in glycerol-free buffer with magnesium [De Ines, C., Leynadier, D., Barasoain, I., Peyrot, V., Garcia, P., Briand, C., Rener, G. A., and Temple, C., Jr. (1994) Cancer Res. 54, 75-84]. In this study, we observed that the S-isomer can promote polymerization of GDP-tubulin, the inactive assembly-incompetent form of tubulin, into nonmicrotubular structures at a critical protein concentration of 1 mg/mL (12 mM MgCl2). Neither the R-isomer nor colchicine have this ability. By electron microscopy, these tubulin polymers showed the same poorly defined filamentous structure when GDP-tubulin or GTP-Mg-tubulin were used. By HPLC measurements, we demonstrated that a dissociated GTP hydrolysis and exchange of nucleotide occurred during the isomer-induced abnormal assembly. Both isomers inhibited the Mg2+-induced tubulin self-association leading to 42 S double ring formation from GTP-Mg-tubulin or GDP-tubulin. Measurement of their binding under nonassociation conditions revealed a 3-fold decrease in the apparent equilibrium binding constant of the R-isomer to GDP-tubulin relative to GTP-Mg-tubulin. For the S-isomer, the decrease in the binding constant was less pronounced. Binding data, analyzed in terms of a system of linked conformational and association equilibria, provide evidence that the active ("straight") rather than the inactive ("curved") conformation of tubulin differentially recognizes these ligands. Whereas binding of colchicine to tubulin is well-known to induce GTP hydrolysis, this is the first case in which the interaction of a ligand with the colchicine site is shown to be sensitive to the presence of GDP or GTP at the distant nucleotide binding site.  相似文献   

20.
(1) A tubulin preparation, purified by two cycles of polymerisation in 4 M glycerol, was further fractionated into two components by chromatography on a column of 6% agarose. One was a fraction of pure tubulin dimer devoid of any combination of high molecular weight ingredients (component T). The other was an aggregate of tubulin containing several minor ingredients (component N). (2) Microtubule formation from these two components was followed in a quantitative way by measuring flow birefringence (deltan). When component N was incubated at 37 degrees C, an instantaneous increase of delta n was observed even at a low concentration of protein, and the extent of polymerisation was roughly proportional to the protein concentration. With component T, the polymerisation occurred after a lag period, and only at a protein concentration higher than at least 0.5 mg/ml. Polymerisation of component T was greatly accelerated when a small amount of component N was added to the reaction medium. (3) Component N was dissociated into a tubulin dimer when the ionic strength of the medium was increased. On reducing the ionic strength, the dimer was reassociated to form the aggregate, which was again capable of accelerating polymerisation of component T. Minor ingredients contained in the component N were not completely removed during the course of its dissociation and reassociation. The dynein-like protein that was present in the component N, however, was no longer detectable in the reassociated aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号