首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冯旋 《辽宁化工》2023,(4):498-501
介绍了α-氯代-α-乙酰基-γ-丁内酯的合成新工艺。以α-乙酰基-γ-丁内酯为原料、硅胶为催化剂、二氯海因为氯代试剂、二氯甲烷为溶剂,合成了α-氯代-α-乙酰基-γ-丁内酯。该工艺避免了传统氯代工艺存在的毒性高、腐蚀性强、污染大等缺点,符合绿色化学发展的趋势,有较好的工业应用前景。  相似文献   

2.
以γ-丁内酯,乙酸乙酯为原料,金属钠和乙醇钠为催化剂,甲苯为溶剂合成α-乙酰基-γ-丁内酯。在金属钠与乙醇钠的钠摩尔比为7:3,甲苯/γ-丁内酯(w/w)=2.51,反应温度85~90℃,反应时间5h,n(乙酸乙酯):n(GBL):金属钠为2.27:0.9:1的条件下;GBL转化率≥98%,ABL收率≥95%。  相似文献   

3.
以γ-丁内酯为原料,分别与碳酸二甲酯、碳酸二乙酯,在氢化钠的催化下,利用α氢的活泼性制得α-甲氧甲酰基-γ-丁内酯和α-乙氧甲酰基-γ-丁内酯。探索了反应温度、反应时间、反应物配比、催化剂用量对产率的影响。结果表明,适宜的反应条件为:①合成α-甲氧甲酰基-γ-丁内酯反应温度25℃,催化剂0.3 mol,反应时间3 h,反应物料物质的量比1∶1.5,产率可达85%;②合成α-乙氧甲酰基-γ-丁内酯反应温度30℃,催化剂0.3 mol,反应时间4 h,反应物物质的量比1∶2,产率可达76%。对产品进行了核磁共振氢谱、红外光谱表征。  相似文献   

4.
γ-丁内酯的催化合成技术进展   总被引:1,自引:0,他引:1  
评述了γ-丁内酯的催化合成技术进展,重点阐述了1,4-丁二醇催化脱氢法和顺酐催化加氢法及2者耦合等方法催化合成γ-丁内酯催化剂方面的研究成果及合成工艺方面的技术进展,并介绍了广受γ-丁内酯合成企业关注的2种新型合成工艺技术。认为开发高效、高选择性、无毒无害的催化剂及绿色环保的新工艺,将是今后γ-丁内酯合成研究的主要方向。  相似文献   

5.
《化工设计通讯》2019,(10):145-146
α-乙酰基-γ-丁内酯是医药和农药中重要的合成中间体,由于其用途被不断的开发,从而使其市场需求也不断扩大,因此,对其进行研究具有重要的意义。主要研究了α-乙酰基-γ丁内酯的合成优化。  相似文献   

6.
高志燕  张凤  周娅芬 《应用化工》2012,(9):1531-1533,1536
采用沉积沉淀法制备了掺镧Ru基催化剂,用于顺酐催化加氢制备γ-丁内酯反应。考察了溶剂、反应时间、温度、氢气压力等条件对顺酐转化率和γ-丁内酯选择性的影响。结果表明,在180℃,氢气压力3.0 MPa的条件下,反应6 h,顺酐的转化率达到100%,γ-丁内酯的选择性为81.2%。  相似文献   

7.
γ-丁内酯GBL用途广泛,石油工业用于吸收炔烃的溶剂,芳烃、醇类和环状醚的萃取剂及润滑油添加剂;医药工业用作麻醉剂及镇静药治疗癫痫、脑出血和高血压,用作维生素原料中间体、X射线造影剂、合成抗菌新药环  相似文献   

8.
N-甲基吡咯烷酮合成技术分析   总被引:1,自引:0,他引:1  
N-甲基吡咯烷酮是一种性能优良的化工溶剂。该文简要分析了N-甲基吡咯烷酮的国内外市场情况,对比分析了γ-丁内酯与单甲基胺、混合甲基胺无催化及催化合成技术,以及丁二醇脱氢制γ-丁内酯γ一丁内酯胺化一体化制N-甲基吡咯烷酮技术,提出了N-甲基吡咯烷酮技术发展建议。  相似文献   

9.
本工作对α-乙酰基-γ-丁内酯与Fe3 的显色条件进行了系统的研究.结果表明:在酸性水溶液中,α-乙酰基-γ-丁内酯与Fe3 生成紫色的稳定配合物,最大吸收波长位于555nm处,其吸光度值与α-乙酰基-γ-丁内酯浓度在0.05%~0.50%范围内符合朗伯比尔定律,相关系数为0.9999,加标回收率为98.52%-101.22%.该法用于α-乙酰基-γ-丁内酯工业化生产过程中的质量控制,获得与气相色谱测定相吻合的结果.  相似文献   

10.
采用γ-丁内酯、异丙醇和亚硫酰氯为起始原料,分2步合成环丙烷甲酸异丙酯:第1步是γ-丁内酯开环酯化,不分离出中间体γ-氯代丁酰氯,一步合成γ-氯代丁酸异丙酯(Ⅰ)产率为90%。第2步是由γ-氯代丁酸异丙酯用固-液相转移催化剂,合成环丙烷甲酸异丙酯(Ⅱ),并采用溶剂苯与水生成共沸物,并用分水器除水,得率为85%。  相似文献   

11.
γ-丁内酯生产与下游产品的开发   总被引:2,自引:0,他引:2  
近年来我国γ-丁内酯发展迅速,为其下游产品的开发提供了较好原料保证,在加快其下游产品开发的同时,也将促进γ-丁内酯的健康发展。本文介绍了γ-丁内酯的主要工业生产合成路线及其几种可供开发的重要下游产品。  相似文献   

12.
系统地研究了在聚氟乙烯薄膜的制备过程中,γ-丁内酯的添加对薄膜加工工艺及性能的影响。实验结果表明,γ-丁内酯作为PVF的潜溶剂可以显著地降低PVF的熔融温度,有效地阻止加工过程中PVF的热降解。通过拉伸测试可知,流延薄膜中γ-丁内酯的剩余含量是影响薄膜能否进一步拉伸的关键因素。挥发性能测试表明,γ-丁内酯在薄膜热处理过程中的挥发速率会严重影响薄膜的力学和光学性能。  相似文献   

13.
以α-氯-α-乙酰基-γ-丁内酯、固体光气为原料,N,N-二甲基哌啶盐酸盐为催化剂合成了3,5-二氯-2-戊酮。考察了催化剂种类、氮气通入速率、物料配比、滴加时间、滴加温度等因素对反应的影响。优化条件下,3,5-二氯-2-戊酮的含量94.0%,收率81.5%(以α-氯-α-乙酰基-γ-丁内酯计)。  相似文献   

14.
以磷酸作催化剂,γ-丁内酯和环己胺反应合成了1-环己基-2-吡咯烷酮,确定了最佳合成工艺条件:n(γ-丁内酯)∶n(环己胺)∶n(磷酸)=1.0∶2.0∶0.15,反应时间2 h,反应温度为170~200℃;产物经减压蒸馏分离提纯,蒸馏后的残余物作催化剂循环使用,1-环己基-2-吡咯烷酮收率90.3%,质量分数99.5%;产物用元素分析、红外光谱、核磁共振等进行了确证。  相似文献   

15.
以丙烯酸甲酯和环己醇为原料,经过酯交换反应合成γ,γ-环戊基丁内酯,γ,γ-环戊基丁内酯加氢得到3-环己基丙酸。考察了2步反应的催化剂和反应条件对产物收率的影响。研究结果表明,酯交换反应的优化条件为:过氧化二叔丁基为引发剂,n(丙烯酸甲酯)∶n(环己醇)=1∶4,反应温度160℃,反应时间6 h;在该条件下,γ,γ-环戊基丁内酯的收率可达93.3%;以0.5%铅/氧化铝为催化剂,γ,γ-环戊基丁内酯加氢反应的优化条件为:反应温度为250℃,γ,γ-环戊基丁内酯空速0.2 h-1,反应压力3.0 MPa,氢气空速500 h-1,在该条件下,γ,γ-环戊基丁内酯转化率78.0%,环己基丙酸选择性80.2%。  相似文献   

16.
α-乙酰基-γ-丁内酯与氯气在无溶剂条件下发生氯化反应,得到α-氯-α-乙酰基-γ-丁内酯和副产氯化氢,α-氯-α-乙酰基-γ-丁内酯在少量水和氯化氢的存在下进行开环、氯代和脱羧反应得到3,5-二氯-2-戊酮.对氯气投料比、反应温度、氯化氢用量等因素进行优化.优化工艺条件为,第一步反应:氯化温度为0~5℃、n(氯气)∶n(α--乙酰基-γ-丁内酯)=1.07∶1.00;第二步反应:水解、脱羧及氯化温度为90℃、n(氯化氢)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.7∶1.0,n(水)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.8∶1.0,通入氯化氢4h,此条件下,收率达95.2%.  相似文献   

17.
采用N,N-二甲基乙酰胺(DMAC)、N-甲基吡咯烷酮(NMP)和γ-丁内酯萃取分离苯-环己烷-环己烯近沸程物系,考察了3种单一溶剂的分离性能,数据表明DMAC性能相对更优。在此基础上,研究了以DMAC为基础溶剂,NMP和γ-丁内酯为助溶剂的二元混合溶剂对苯-环己烷-环己烯物系的分离性能,结果表明:混合溶剂提高了从环己烷-环己烯中萃取分离苯的能力,但增大了从环己烷中分离环己烯的难度。当NMP和γ-丁内酯在二元混合溶剂中的质量分数分别为10%和25%时,其分离性能优于单一溶剂,整体分离效果也达到最优。  相似文献   

18.
α-乙酰基-γ-丁内酯与氯气在无溶剂条件下发生氯化反应,得到α-氯-α-乙酰基-γ-丁内酯和副产氯化氢,α-氯-α-乙酰基-γ-丁内酯在少量水和氯化氢的存在下进行开环、氯代和脱羧反应得到3,5-二氯-2-戊酮.对氯气投料比、反应温度、氯化氢用量等因素进行优化.优化工艺条件为,第一步反应:氯化温度为0~5℃、n(氯气)∶n(α--乙酰基-γ-丁内酯)=1.07∶1.00;第二步反应:水解、脱羧及氯化温度为90℃、n(氯化氢)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.7∶1.0,n(水)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.8∶1.0,通入氯化氢4h,此条件下,收率达95.2%.  相似文献   

19.
《医药化工》2007,(2):43-44
◆N-甲基吡咯烷酮(NMP) 由γ-丁内酯与甲胺经过缩合而得。该品作为一种高效选择性溶剂,主要用于有机原料的回收、润滑油精制和聚合反应的溶剂。另外还可以合成医药,颜料、香料及清洗剂等精细化学品的合成。2005年,我国N-甲基吡咯烷酮产量约为2.5万吨,随着我国石油化工和塑料工业的发展,N-甲基吡咯烷酮的需求量将呈现年均8%的增长速度。  相似文献   

20.
周忠强  胡先明 《农药》2006,45(1):22-23,30
L-蛋氨酸与碘甲烷反应生成(S)-蛋氨酸硫甲基碘锚盐,然后在碳酸氢钠溶液中回流20h得到(S)-高丝氨酸。再分别用2种路线合成目标化合物。路线1:以氯甲酸甲酯对(S)-高丝氨酸的氨基进行保护,酸化至pH1~2后在60℃蒸去溶剂,剩余物经乙酸乙酯提取并结晶得到(S)-α-(甲氧基羰基)氨基-γ-丁内酯,总产率49.8%。路线2:(S)-高丝氨酸与3mol/L盐酸回流生成(S)-α-氨基-γ-丁内酯盐酸盐,再与氯甲酸甲酯反应得到(S)-α-(甲氧基羰基)氨基-γ-内酯,总产率48.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号