首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
王丽萍  陈宏  杜洁洁  邱启仓  邱飞岳 《软件学报》2020,31(12):3716-3732
多偏好向量引导的协同进化算法(PICEA-g)是将目标向量作为偏好,个体支配目标向量的个数作为适应值,以有效降低高维目标空间中非支配解的比例.但PICEA-g所获解集是近似Pareto前沿,而不是决策者真正感兴趣部分的Pareto最优解,导致算法在处理高维优化问题时性能下降和计算资源的浪费.鉴于此,提出一种基于偏好向量...  相似文献   

2.
王丽萍  林思颖  邱飞岳 《计算机科学》2015,42(1):268-271,296
传统进化算法在解决4个或4个以上目标的阵列天线综合问题时,出现了选择压力不足的难题.给出了一种基于双极偏好占优的阵列天线优化设计方法,该方法借助决策者根据解决实际问题的经验给出的目标值偏好,采用TOPSIS方法,比较Pareto解之间的相对贴近度值,建立了严格的非支配关系,引导种群向高的定向辐射方向图及低的零陷值靠近.为了可视化高维空间中的解集,用高维空间对角技术法对高维空间上的解进行可视化,并将该方法与现有的3种多目标优化方法进行解集质量优劣的比较与分析.仿真结果显示,该方法在解决4个以上目标的阵列天线综合问题时具有更好的收敛性以及更多的优秀解个数.  相似文献   

3.
基于双极偏好控制的多目标粒子群优化算法   总被引:2,自引:0,他引:2  
考虑双极偏好信息对粒子群的控制作用,提出一种使用双极偏好——正偏好和负偏好引导粒子群向 Pareto 前沿偏好区域进化的方法.根据TOPSIS 决策法思想,将外部种群粒子与正负偏好点的相对贴近度排序作为 外部种群管理和全局最优解更新策略;根据贴近度值确定解集的分布度;选取6 种不同类型的多目标测试函数进行 算法模拟,从世代距离、空间测度和超体积测度3 个指标与基于单极偏好的多目标粒子算法进行性能比较.结果显 示,基于双极偏好控制的多目标粒子群算法的收敛性和综合性能更优秀.  相似文献   

4.
一种快速的基于占优树的多目标进化算法   总被引:7,自引:0,他引:7       下载免费PDF全文
石川  李清勇  史忠植 《软件学报》2007,18(3):505-516
为了解决多目标进化算法中适应值指派(fitness assignment)的耗时问题,提出了一种新颖的适应值指派方法--占优树.占优树保存了个体之间的必要信息,暗含了个体的密度信息,而且显著减少了个体之间的比较.此外,基于占优树的淘汰策略没有花费额外的代价就保存了种群多样性.在此基础上,提出了一种新的基于占优树的多目标进化算法.通过6个测试问题和3个方面的测试标准,新算法在接近真实的最优前沿和保持种群的多样性方面,与SPEA2和NSGA-II性能相当,但速度要比它们快得多.  相似文献   

5.
基于进化算法的多目标优化方法   总被引:10,自引:0,他引:10  
进化算法在解决多目标优化问题中有其特有的优势.首先对多目标优化问题进行了描述;然后结合研究现状讨论了目前几种主要的基于进化算法的多目标优化方法,以及它们的优缺点;最后给出了多目标进化优化算法的一些应用,以及进化多目标优化算法的未来发展方向.  相似文献   

6.
高维多目标优化问题是目标个数多于3的多目标优化问题.尽管进化优化方法在多目标优化问题求解中显示了卓越的性能,但是,对于高维多目标优化问题,已有方法存在目标维数难以扩展、Pareto占优关系无法区分进化个体,以及多样性维护策略失效等困难.因此,高维多目标优化问题的高效求解引起进化优化界的高度关注.本文将分别从新型占优关系、多样性维护策略、目标缩减、目标聚合、基于性能指标的选择、融入偏好、集合进化、变化算子、可视化技术,以及应用等10个方面分类总结近年来进化高维多目标优化的研究成果,通过分析已有研究存在的问题,指出今后可能的研究方向.  相似文献   

7.
区间多目标优化问题在实际应用中普遍存在且非常重要.为得到贴合决策者偏好的最满意解,采用边优化边决策的方法,提出一种交互进化算法.该算法通过请求决策者从部分非被支配解中选择一个最差解,提取决策者的偏好方向,基于该偏好方向设计反映候选解逼近性能的测度,将具有相同序值和决策者偏好的候选解排序.将所提方法应用于4个区间2目标优化问题,并与利用偏好多面体解决区间多目标优化问题的进化算法(PPIMOEA)和后验法比较,实验结果验证了所提出方法的有效性和高效性.  相似文献   

8.
进化多目标优化算法研究   总被引:50,自引:1,他引:50       下载免费PDF全文
进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多目标优化问题,一些区别于传统Pareto占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法.  相似文献   

9.
高维多目标进化算法研究综述   总被引:5,自引:0,他引:5  
孔维健 《控制与决策》2010,25(3):321-326
传统的多目标进化算法能够有效地解决2个或3个目标的优化问题,但当优化目标超过4维即具有高维目标时,其优化效果将大大下降,因此高维多目标进化算法的研究得到了较多的关注.鉴于此,对高维多目标进化算法的研究进展进行系统地分类综述,分析了高维目标对优化算法造成的困难以及改进的可视化技术;总结了各类算法的特点与缺陷,并给出进一步可能的研究方向.  相似文献   

10.
利用参考点及角度值引入决策者的偏好信息,采用角度偏好区域设定方法将目标空间划分为偏好区域和非偏好区域,提出一种能区分偏好区域和非偏好区域中非支配解的支配策略——角度偏好的ε-Pareto支配策略.为验证所提出的支配策略的有效性,将其融入基于ε支配的多目标进化算法(ε-MOEA)中,形成AP-ε-MOEA.通过与融入G支配的G-NSGA-II和融入R支配的R-NSGA-II的性能对比实验表明,AP-ε-MOEA在以较快速度收敛到Pareto最优边界的同时,能较好满足决策者偏好.  相似文献   

11.
刘元  郑金华  邹娟  喻果 《自动化学报》2018,44(7):1304-1320
传统多目标优化算法(Multi-objective evolution algorithms,MOEAs)的基本框架大致分为两部分:首先是收敛性保持,采用Pareto支配方法将种群分成若干非支配层;其次是分布性保持,在临界层中,采用分布性保持机制维持种群的分布性.然而在处理高维优化问题(Many-objective optimization problems,MOPs)(目标维数大于3)时,随着目标维数的增加,种群的收敛性和分布性的冲突加剧,Pareto支配关系比较个体优劣的能力也迅速下降,此时传统的MOEA已不再适用于高维优化问题.鉴于此,本文提出了一种基于邻域竞赛的多目标优化算法(Evolutionary algorithm based on neighborhood competition for multi-objective optimization,NCEA).NCEA首先将个体的各个目标之和作为个体的收敛性估计;然后,计算当前个体向量与收敛性最好的个体向量之间的夹角,并将其作为当前个体的邻域估计;最后,通过邻域竞赛方法将问题划分为若干个相互关联的子问题并逐步优化.为了验证NCEA的有效性,本文选取5个优秀的算法与NCEA进行对比实验.通过对比实验验证,NCEA具有较强的竞争力,能同时保持良好的收敛性和分布性.  相似文献   

12.
进化高维多目标优化算法研究综述   总被引:1,自引:2,他引:1  
首先针对常规多目标优化算法求解高维多目标优化时面临的选择压力衰减问题进行论述;然后针对该问题,按照选择机制的不同详细介绍基于Pareto支配、基于分解策略和基于性能评价指标的典型高维多目标优化算法,并分析各自的优缺点;接着立足于一种全新的性能评价指标-----R2指标,给出R2指标的具体定义,介绍基于R2指标的高维多目标优化算法,分析此类算法的本质,并按照R2指标的4个关键组成部分进行综述;最后,发掘其存在的潜在问题以及未来发展空间.  相似文献   

13.
谢承旺  郭华  韦伟  姜磊 《软件学报》2023,34(4):1523-1542
传统的基于Pareto支配关系的多目标进化算法(MOEA)难以有效求解高维多目标优化问题(MaOP). 提出一种利用PBI效用函数的双距离构造的支配关系, 且无需引入额外的参数. 其次, 利用双距离定义了一种多样性保持方法, 该方法不仅考虑了解个体的双距离, 而且还可以根据优化问题的目标数目自适应地调整多样性占比, 以较好地平衡高维目标解群的收敛性和多样性. 最后, 将基于双距离构造的支配关系和多样性保持方法嵌入到NSGA-II算法框架中, 设计了一种基于双距离的高维多目标进化算法MaOEA/d2. 该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ和WFG基准测试问题上进行了IGD和HV性能测试, 结果表明, MaOEA/d2算法具有较好的收敛性和多样性. 由此表明, MaOEA/d2算法是一种颇具前景的高维多目标进化算法.  相似文献   

14.
基于Pareto-ε优胜的自适应快速多目标演化算法   总被引:1,自引:0,他引:1  
王江晴  杨勋 《计算机应用》2010,30(4):997-999
在多目标优化领域,如何快速地为决策者提供合理、可行的解决方案尤为重要,为此,给出了多目标优化问题的一种新解法。定义了一种Pareto-ε优胜关系的概念,将此概念引入多目标优化问题中,设计了一种新的基于ε-优胜的自适应快速多目标演化算法。计算机仿真表明,该算法可以明显改善求解多目标优化问题时的寻优过程,能适应实际应用环境下快速、有效的决策要求。  相似文献   

15.
现实中不断涌现的高维多目标优化问题对传统的基于Pareto支配的多目标进化算法构成巨大挑战.一些研究者提出了若干改进的支配关系,但仍难以有效地平衡高维多目标进化算法的收敛性和多样性.提出一种动态角度向量支配关系动态地刻画进化种群在高维目标空间的分布状况,以较好地在收敛性与多样性之间取得平衡;另外,提出一种改进的基于Lp...  相似文献   

16.
现实中大量存在的高维多目标优化问题对以往高效的多目标进化算法提出了严峻的挑战.通过将分解策略和协同策略相结合提出一种高维多目标进化算法MaOEA/DCE.该算法利用混合水平正交实验方法在聚合系数空间产生一组均匀分布的权重向量以改善初始种群的分布性;其次,算法将差分进化算子和自适应SBX算子进行协同进化,以产生高质量的子代个体,并改善算法的收敛性.该算法与另外5种高性能的多目标进化算法在基准测试函数集DTLZ{1,2,4,5}上进行对比实验,利用改进的反转世代距离指标IGD+评估各算法的性能.实验结果表明,Ma OEA/DCE算法与其他对比算法相比,在总体上具有较为显著的收敛性和分布性优势.  相似文献   

17.
朱占磊  李征  赵瑞莲 《计算机应用》2017,37(10):2823-2827
在高维多目标优化问题中,Pareto支配关系存在非支配解随优化目标数增加呈指数级增长和种群选择压力下降等问题。针对这些问题,基于线性权重聚合函数和支配关系两种比较多目标解方法的思想,提出一种线性权重最优支配关系(LWM-dominance),并理论证明了LWM非支配解集是Pareto非支配解集的子集,同时保留了种群中重要的角解。进一步地,基于LWM支配关系,实现了一个高维多目标进化优化算法,基于该算法的实验验证了LWM支配关系的性质。在随机解空间中的实验结果表明LWM支配关系适用于5~15个目标的高维多目标优化问题,通过DTLZ1~DTLZ7高维多目标优化问题进化过程中LWM非支配解集与Pareto非支配解集规模的对比实验,结果表明优化目标数为10和15时非支配解的比例平均下降了约17%。  相似文献   

18.
利用双目标模型求解约束优化问题时,由于它们的最优解集并不相等,因此需要增加特殊机制确保求解双目标问题的算法收敛到原问题的最优解.为克服这一缺点,本文首先将约束优化问题转化为新的双目标优化模型,并证明了新模型的最优解集与原问题的最优解集相等.其次,以简单的差分进化为搜索算法,基于多目标Pareto支配关系的非支配排序为选择准则,提出了求解新模型的差分进化算法.最后,用10个标准测试函数的数值试验说明了新模型及求解算法的有效性.  相似文献   

19.
肖人彬  李贵  陈峙臻 《控制与决策》2023,38(7):1761-1788
近年来,超多目标优化逐渐成为多目标优化研究的热点之一,由于超多目标优化问题具有难以寻优的高维目标空间,其研究颇有挑战性,因此受到广泛关注.现有综述性文献通常只是针对某个特定方面,缺乏系统性考察.鉴于此,首先从问题定义出发,综合考虑超多目标优化问题范畴,进行超多目标优化问题的概念辨析;其次通过对近些年的相关文献整理,系统分析超多目标优化问题进展并对其中部分经典方法加以介绍,通过对基准测试函数和性能指标的说明,围绕超多目标优化研究方法展开综合性论述;接着选取5个典型的超多目标进化算法,在2组基准测试函数和4个实际问题上分别展开仿真实验,通过性能指标和非参数检验对不同类别的算法进行理论分析;最后在明确超多目标优化研究领域的若干前沿问题的基础上,对今后的研究工作进行展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号