首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agrobacterium tumefaciens strain 1D1609 is reported here as the first field isolate from alfalfa (Medicago sativa L.). Unlike well-characterized A. tumefaciens strains such as C58 and Ach5, strain 1D1609 is highly virulent on alfalfa and has a distinctive host range. Interestingly, strain 1D1609 is naturally resistant to kanamycin and spectinomycin. The Ti plasmid in strain 1D1609 is an octopine-type; thus, tumors formed by strain 1D1609 synthesize octopine, which is utilized by the bacterium as a sole carbon source. Reciprocal exchange of Ti plasmids between strains 1D1609 and C58 showed that both chromosomal and Ti plasmid genes in strain 1D1609 contribute specifically to tumor formation on alfalfa. In addition, the nondormant CUF101 alfalfa cultivar from which strain 1D1609 was isolated was significantly more susceptible to all Agrobacterium strains tested than was the dormant Agate cultivar.  相似文献   

2.
FIZ15 phage of Pseudomonas aeruginosa causes lysogenic conversion in PAO1 strain. Lysogen shows increased adhesion to human buccal epithelial cells, increased resistance to 75 percent human serum bactericidal effect, and streptomycin resistant. These phenotypes apparently are due to a phage-induced superficial change on its own bacterial receptor, which probably is the O-antigen. In order to begin FIZ15 characterization, nitrous acid-induced clear-plaque mutants were obtained. They belonged to three complementation groups and mapping by two factor crosses revealed that they were closely linked. In a search for phage mutants that do not cause lysogenic conversion, two streptomycin-sensitive mutants were obtained by ethyl methane sulphonate mutagenesis of PAO1 lysogenic for FIZ15 (PIZ15 strain). One mutant (con1) showed and adhesion value similar to that of PAO1 and the other (con2) had an adhesion twofold and 1.3 times greater than PAO1 and PIZ15, respectively. con1 did not show increased serum resistance, whereas con2 was as resistant as PIZ15. Phages were isolated from the streptomycin sensitive mutants and used to relisogenize PAO1 to obtain the con1d and con2d lysogens. Adhesion and serum sensitivity of con1d was identical to that of PAO1 but con2d behaves like PIZ15. FIZ15 phage was unable to adsorb to PIZ15, con2 and con2d. On the other hand, FIZ15 phage adsorbs well to con1 and con1d but not to PIZ15. These results suggest that con1 mutation lies on the phage chromosome and con2 on the bacterial one. Finally, adhesion of all lysogens and PAO1 was stimulated 2-3 times by KCl and this effect was suppressed by and oxidative phosphorylation uncoupler.  相似文献   

3.
Agrobacterium tumefaciens C58 and its derivatives give rise to spontaneous mutants resistant to tetracycline at a high frequency. We observed that a mutation affecting a tRNA processing function significantly affected the emergence of such mutants, suggesting that C58 contained a positively acting gene conferring resistance to tetracycline. A cosmid clone conferring resistance to tetracycline in Escherichia coli and Agrobacterium was isolated from a genomic bank of one such mutant. Subcloning, transposon mutagenesis, and DNA sequence analysis revealed that this DNA fragment contained two divergently transcribed genes, tetA and tetR, encoding products that were very similar to proteins of the Tet(A) class of tetracycline resistance systems. In the clone from this mutant, tetR was disrupted by an IS426. The homologous region from wild-type NT1 contained an intact tetR gene and did not confer resistance to tetracycline. Hybridization analysis showed that of 22 members of the genus Agrobacterium surveyed, only strains C58 and T37 contained the tet determinant. Moreover, only these two strains mutated to resistance to this antibiotic. Unlike other Tet(A) systems, neither tetracycline nor a series of its derivatives induced the expression of this tet gene unit. Other polycyclic compounds, including many of plant origin, also did not induce this tet gene system. The divergent promoter region of this tet system contained a single inverted repeat element identical to one such operator repeat in the promoter region of the tet determinant from the IncP1alpha R plasmid RP4. TetR repressor proteins from the Agrobacterium tet system and from RP4 interacted with the heterologous operators. While the repressive effect of the TetR protein from strain C58 (TetRC58) on the tetA gene from strain RP4 (tetARP4) was not relieved by tetracycline, repression of tetAC58 by TetRRP4 was lifted by this antibiotic.  相似文献   

4.
Agrobacterium tumefaciens 1D1609, which was originally isolated from alfalfa (Medicago sativa L.), contains genes that increase competitive root colonization on that plant by reducing the accumulation of alfalfa isoflavonoids in the bacterial cells. Mutant strain I-1 was isolated by its isoflavonoid-inducible neomycin resistance following mutagenesis with the transposable promoter probe Tn5-B30. Nucleotide sequence analysis showed the transposon had inserted in the first open reading frame, ifeA, of a three-gene locus (ifeA, ifeB, and ifeR), which shows high homology to bacterial efflux pump operons. Assays on alfalfa showed that mutant strain I-1 colonized roots normally in single-strain tests but was impaired significantly (P < or = 0.01) in competition against wild-type strain 1D1609. Site-directed mutagenesis experiments, which produced strains I-4 (ifeA::gusA) and I-6 (ifeA::omega-Tc), confirmed the importance of ifeA for competitive root colonization. Exposure to the isoflavonoid coumestrol increased beta-glucuronidase activity in strain I-4 21-fold during the period when coumestrol accumulation in wild-type cells declined. In the same test, coumestrol accumulation in mutant strain I-6 did not decline. Expression of the ifeA-gusA reporter was also induced by the alfalfa root isoflavonoids formononetin and medicarpin but not by two triterpenoids present in alfalfa. These results show that an efflux pump can confer measurable ecological benefits on A. tumefaciens in an environment where the inducing molecules are known to be present.  相似文献   

5.
6.
When coresident with the Ti (tumor-inducing) plasmid, the 21-kDa product of the osa gene of the plasmid pSa can suppress crown gall tumorigenesis incited by Agrobacterium tumefaciens. Neither T-DNA processing nor vir (virulence) gene induction is affected by the presence of osa in the bacterium. We used Arabidopsis thaliana root segments and tobacco leaf discs to demonstrate that Osa inhibits A. tumefaciens from transforming these plants to the stable phenotypes of tumorigenesis, kanamycin resistance, and stable beta-glucuronidase (GUS) expression. When A. tumefaciens contained osa, the lack of expression of transient GUS activity in infected plant tissues, as well as the lack of systemic viral symptoms following agroinfection of Nicotiana benthamiana by tomato mottle virus, suggested that oncogenic suppression by Osa occurs before T-DNA enters the plant nucleus. The extracellular complementation of an A. tumefaciens virE2 mutant (the T-DNA donor strain) by an A. tumefaciens strain lacking T-DNA but containing a wild-type virE2 gene (the VirE2 donor strain) was blocked when osa was present in the VirE2 donor strain, but not when osa was present in the T-DNA donor strain. These data indicate that osa inhibits VirE2 protein, but not T-DNA export from A. tumefaciens. These data further suggest that VirE2 protein and T-DNA are separately exported from the bacterium. The successful infection of Datura stramonium plants and leaf discs of transgenic tobacco plants expressing VirE2 protein by an A. tumefaciens virE2 mutant carrying osa confirmed that oncogenic suppression by osa does not occur by blocking T-DNA transfer. Overexpression of virB9, virB10, and virB11 in A. tumefaciens did not overcome oncogenic suppression by osa. The finding that the expression of the osa gene by itself, rather than the formation of a conjugal intermediate with pSa, blocks transformation suggests that the mechanism of oncogenic suppression by osa may differ from that of the IncQ plasmid RSF1010.  相似文献   

7.
Wild-type VirE2 and VirD2 proteins from Agrobacterium tumefaciens contain nuclear targeting sequences (NLS) that are likely involved in directing transferred T strands to the plant nucleus. An A. tumefaciens virE2 virD2DeltaNLS double mutant was able to form tumors on VirE2-producing transgenic tobacco but not on wild-type tobacco. Because this mutant bacterial strain contains no known T-strand nuclear targeting signal, the data indicate that wild-type VirE2 proteins produced by the plant can interact with the T strands in the plant cytoplasm and direct them to the nucleus.  相似文献   

8.
Agrobacterium sp. strain KNK712, which produced N-carbamyl-D-amino acid amidohydrolase (DCase) was isolated from soil. The bacterium had D-specific hydantoinase activity also. Both enzymes are suitable for use in the production of D-amino acids. The DCase gene from Agrobacterium sp. strain KNK712 was cloned into Escherichia coli. The cloned DNA fragment contained one open reading frame, predicted to encode a peptide of 304 amino acids, with a calculated molecular weight of 34,285. The DCase gene was overexpressed under the control of the lac promoter, and DCase accounted for 50% of the soluble protein in the cells. The enzyme was purified and some properties were investigated. Both the optimum pH and the pH that gave greatest stability were about pH 7.0. The optimum temperature was 65 degrees C, and the enzyme was stable at 55 degrees C. The enzyme had strict specificity toward N-carbamyl-D-amino acids, and was inhibited by thiol reagents, Cu2+, Hg2+, Ag+, and ammonia.  相似文献   

9.
The Arabidopsis thaliana mutants uvh1 and rad5, originally identified as radiation hypersensitive, were reported to be deficient in T-DNA integration based on the relative efficiencies of stable transformation and T-DNA transfer. We reassessed these mutants for susceptibility to transformation by Agrobacterium tumefaciens. The mutant rad5 showed a significant reduction in the efficiency of transient as well as stable transformation, compared with its wild-type progenitor. These data indicate that rad5 is blocked at a step in the transformation process prior to T-DNA integration. We additionally found, using both an in vitro root inoculation and an in vivo flower bolt inoculation assay, that the mutant uvh1 is as susceptible to A. tumefaciens-mediated transformation as is its wild-type progenitor, C10.  相似文献   

10.
11.
At least 10% of spontaneous chromosomal antibiotic resistant mutants of bacteria express a strain-dependent graded reduction of virulence; this correlates linearly with a prolonged generation time. Occasionally, these mutants are temperature sensitive or/and auxotrophe. The work described in this paper provides evidence that in such strains the resistance and the accompanying markers exist only as a functional genetic unit. In a series of transduction experiments with a pathogenic strain of Salmonella typhimurium, it was found that without exception, the resistance and the additional markers were 100% simultaneoulsy transferred. Furthermore, antibiotic-resistant Escherichia coli mutants with prolonged generation time, were isolated from faecal samples; it is thus indicated that, such innocuous mutants occur at any time in the intestine. It is concluded that concerns connecting such mutants to the possibility of resistance dissemination are unfounded; furthermore, even if transfer of resistance occurred, only attenuated strains would be disseminated.  相似文献   

12.
Biological characteristics of eleven phages for Streptococcus bovis were investigated; seven phage were isolated from ovine rumen and four were virulent mutants of temperate phages of lysogenic cultures. The phages had many properties in common: similar morphology of negative colonies, the identical spectrum of lytic action, related antigens, absolute or high requirement of calcium ions, thermolability, and inactivation by the content of the rumen. Their susceptibility to the inactivating action of acetic acid, urea and temperature was however different. Chloroform and phenol may be used during purification and conservation of the phages.  相似文献   

13.
Many gram-negative bacteria regulate expression of specialized gene sets in response to population density. This regulatory mechanism, called autoinduction or quorum-sensing, is based on the production by the bacteria of a small, diffusible signal molecule called the autoinducer. In the most well-studied systems the autoinducers are N-acylated derivatives of L-homoserine lactone (acyl-HSL). Signal specificity is conferred by the length, and the nature of the substitution at C-3, of the acyl side-chain. We evaluated four acyl-HSL bioreporters, based on tra of Agrobacterium tumefaciens, lux of Vibrio fischeri, las of Pseudomonas aeruginosa, and pigment production by Chromobacterium violaceum, for their ability to detect sets of 3-oxo acyl-HSLs, 3-hydroxy acyl-HSLs, and alkanoyl-HSLs with chain lengths ranging from C4 to C12. The traG::lacZ fusion reporter from the A. tumefaciens Ti plasmid was the single most sensitive and versatile detector of the four. Using this reporter, we screened 106 isolates representing seven genera of bacteria that associate with plants. Most of the Agrobacterium, Rhizobium, and Pantoea isolates and about half of the Erwinia and Pseudomonas isolates gave positive reactions. Only a few isolates of Xanthomonas produced a detectable signal. We characterized the acyl-HSLs produced by a subset of the isolates by thin-layer chromatography. Among the pseudomonads and erwinias, most produced a single dominant activity chromatographing with the properties of N-(3-oxo-hexanoyl)-L-HSL. However, a few of the erwinias, and the P. fluorescens and Ralstonia solanacearum isolates, produced quite different signals, including 3-hydroxy forms, as well as active compounds that chromatographed with properties unlike any of our standards. The few positive xanthomonas, and almost all of the agrobacteria, produced small amounts of a compound with the chromatographic properties of N-(3-oxo-octanoyl)-L-HSL. Members of the genus Rhizobium showed the greatest diversity, with some producing as few as one and others producing as many as seven detectable signals. Several isolates produced extremely nonpolar compounds indicative of very long acyl side-chains. Production of these compounds suggests that quorum-sensing is common as a gene regulatory mechanism among gram-negative plant-associated bacteria.  相似文献   

14.
Acylated homoserine lactones (AHLs) are chemical signals that mediate population density-dependent (quorum-sensing) gene expression in numerous gram-negative bacteria. In this study, gram-negative bacilli isolated from catheters were screened for AHL production by a cross-feeding assay utilizing an AHL-responsive Agrobacterium tumefaciens reporter strain. Positive reactions were obtained from 14 isolates of Pseudomonas aeruginosa; negative or weakly positive reactions were recorded for isolates of five other species. P. aeruginosa biofilms were then produced on catheters in a physical model of the bladder. Sections of colonized all-silicone catheters gave positive reactions for the quorum-sensing signal molecules as did sections that had been cleaned of biofilm and autoclaved. Control sections of unused catheters were negative in the tests. Sections from four of nine catheters that had been freshly removed from patients gave positive reactions for AHLs. Cleaned autoclaved sections of three of these catheters also gave strongly positive reactions for AHLs. These results demonstrate that AHLs are produced by biofilms as they develop on the catheters both in vitro in the model and in vivo in the patient's bladder. They represent the first demonstration of AHL production by biofilms in a clinical setting.  相似文献   

15.
Erwinia carotovora subsp. betavasculorum Ecb168 causes vascular necrosis and root rot of sugar beet and produces an antibiotic(s) that is antagonistic against other Erwinia spp. EcbI- mutants of Ecb168, each containing a single transposon insertion in the ecbI gene (for Erwinia carotovora subsp. betavasculorum inducer), do not produce detectable levels of extracellular protease or antibiotic(s), and express less pectate lyase activity and virulence than the wild-type strain. A plasmid containing the cloned ecbI gene complemented the EcbI- mutants for these phenotypes. Protease production by EcbI- mutants grown on agar surfaces was restored by neighboring cells of Escherichia coli containing ecbI. Production of a diffusible N-acylhomoserine lactone autoinducer by wild-type Ecb168 was detected with indicator strains of E. coli and Agrobacterium tumefaciens. EcbI- mutant strains did not produce an autoinducer detected by the indicator strains. Antibiotic production by EcbI- mutants was restored by cell-free culture supernatants of Ecb168 or E. coli containing a cloned ecbI gene. The predicted amino acid sequence of EcbI is similar to those of CarI, ExpI, and HsII, three LuxI homologs required for production of a diffusible N-acylhomoserine lactone autoinducer in Erwinia carotovora subsp. carotovora. A luxR homolog, termed ecbR (for Erwinia carotovora subsp. betavasculorum regulator), is convergently transcribed and overlaps with ecbI by 17 bp at their 3' ends. These results are consistent with the hypothesis that a quorum-sensing system related to the prototypic luxI-luxR gene pair controls antibiotic and exoenzyme production in Erwinia carotovora subsp. betavasculorum.  相似文献   

16.
VirD2 is one of the key Agrobacterium tumefaciens proteins involved in T-DNA processing and transfer. In addition to its endonuclease domain, VirD2 contains a bipartite C-terminal nuclear localization sequence (NLS) and a conserved region called omega that is important for virulence. Previous results from our laboratory indicated that the C-terminal, bipartite NLS and the omega region are not essential for nuclear uptake of T-DNA, and further suggested that the omega domain may be required for efficient integration of T-DNA into the plant genome. In this study, we took two approaches to investigate the importance of the omega domain in T-DNA integration. Using the first approach, we constructed a T-DNA binary vector containing a promoterless gusA-intron gene just inside the right T-DNA border. The expression of beta-glucuronidase (GUS) activity in plant cells transformed by this T-DNA would indicate that the T-DNA integrated downstream of a plant promoter. Approximately 0.4% of the tobacco cell clusters infected by a wild-type A. tumefaciens strain harboring this vector stained blue with 5-bromo-4-chloro-3-indolyl beta-D-glucuronic acid (X-gluc). However, using an omega-mutant A. tumefaciens strain harboring the same binary vector, we did not detect any blue staining. Using the second approach, we directly demonstrated that more T-DNA is integrated into high-molecular-weight plant DNA after infection of Arabidopsis thaliana cells with a wild-type A. tumefaciens strain than with a strain containing a VirD2 omega deletion/substitution. Taken together, these data indicate that the VirD2 omega domain is important for efficient T-DNA integration. To determine whether the use of the T-DNA right border is altered in those few tumors generated by A. tumefaciens strains harboring the omega mutation, we analyzed DNA extracted from these tumors. Our data indicate that the right border was used to integrate the T-DNA in a similar manner regardless of whether the VirD2 protein encoded by the inciting A. tumefaciens was wild-type or contained an omega mutation. In addition, a mutant VirD2 protein lacking the omega domain was as least as active in cleaving a T-DNA border in vitro as was the wild-type protein. Finally, we investigated the role of various amino acids of the omega and bipartite NLS domains in the targeting of a GUS-VirD2 fusion protein to the nucleus of electroporated tobacco protoplasts. Deletion of the omega domain, or mutation of the 10-amino-acid region between the two components of the bipartite NLS, had little effect upon the nuclear targeting of the GUS-VirD2 fusion protein. Mutation of both components of the NLS reduced, but did not eliminate, targeting of the fusion protein to the nucleus.  相似文献   

17.
Inducible virulence (vir) genes of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid are under control of a two-component regulatory system. In response to environmental factors (phenolic compounds, sugars, pH) VirA protein phosphorylates VirG, which in turn interacts with the promoters of other vir genes, causing induction. A mutation of virG, virGN54D (which codes for a Asn-54-->Asp amino acid change in the product), causes constitutive expression of other vir genes independent of virA. We have investigated whether providing Agrobacterium with a plasmid containing virGN54D augments the efficiency of transfer of the T-DNA (transferred DNA). For both tobacco and cotton, we observed an enhancement of transformation efficiency when the inciting Agrobacterium strain carries the virGN54D mutation. We also tested whether supplying Agrobacterium with a similar plasmid containing wild-type virG affects the efficiency of T-DNA transfer. An intermediate efficiency was observed when this plasmid was employed. Using a beta-glucuronidase (GUS) reporter gene to assess transient expression of T-DNA after transfer to tobacco and maize tissues, we observed a higher frequency of GUS-expressing foci after inoculation with Agrobacterium strains carrying virGN54D than with Agrobacterium carrying the wild-type virG. Gene-transfer efficiency to maize by an octopine strain was greatly improved upon introduction of virGN54D. Multiple copies of wild-type virG were equally effective in promoting transient expression efficiency in tobacco but were virtually ineffective in maize. We propose the use of virGN54D to improve the efficiency of Agrobacterium-mediated transformation, especially for recalcitrant plant species.  相似文献   

18.
19.
FtsZ and FtsA are essential for cell division in Escherichia coli and colocalize to the septal ring. One approach to determine what regions of FtsA and FtsZ are important for their interaction is to identify in vivo interactions between FtsA and FtsZ from different species. As a first step, the ftsA genes of Rhizobium meliloti and Agrobacterium tumefaciens were isolated and characterized. In addition, an FtsZ homolog that shared the unusual C-terminal extension of R. meliloti FtsZ1 was found in A. tumefaciens. In order to visualize their localization in cells, we tagged these proteins with green fluorescent protein (GFP). When R. meliloti FtsZ1-GFP or A. tumefaciens FtsZ-GFP was expressed at low levels in E. coli, they specifically localized only to the E. coli FtsZ ring, possibly by coassembly. When A. tumefaciens FtsA-GFP or R. meliloti FtsA-GFP was expressed in E. coli, they failed to localize detectably to the E. coli FtsZ ring. However, when R. meliloti FtsZ1 was coexpressed with them, fluorescence localized to a band at the midcell division site, strongly suggesting that FtsA from either A. tumefaciens or R. meliloti can bind directly to its cognate FtsZ. As expected, GFP-tagged FtsZ1 and FtsA from either R. meliloti or A. tumefaciens localized to the division site in A. tumefaciens cells. Therefore, the 61 amino acid changes between A. tumefaciens FtsA and R. meliloti FtsA do not prevent their direct interaction with FtsZ1 from either species, suggesting that those residues are not essential for protein-protein contacts. Moreover, the failure of the two non-E. coli FtsA derivatives to interact strongly with E. coli FtsZ in this in vivo system unless their cognate FtsZ was also present suggests that FtsA-FtsZ interactions have coevolved and that the residues which differ between the E. coli proteins and those of the two other species may be important for specific interactions.  相似文献   

20.
Agrobacterium tumefaciens transfers a piece of its Ti plasmid DNA (transferred DNA or T-DNA) into plant cells during crown gall tumorigenesis. A. tumefaciens can transfer its T-DNA to a wide variety of hosts, including both dicotyledonous and monocotyledonous plants. We show that the host range of A. tumefaciens can be extended to include Saccharomyces cerevisiae. Additionally, we demonstrate that while T-DNA transfer into S. cerevisiae is very similar to T-DNA transfer into plants, the requirements are not entirely conserved. The Ti plasmid-encoded vir genes of A. tumefaciens that are required for T-DNA transfer into plants are also required for T-DNA transfer into S. cerevisiae, as is vir gene induction. However, mutations in the chromosomal virulence genes of A. tumefaciens involved in attachment to plant cells have no effect on the efficiency of T-DNA transfer into S. cerevisiae. We also demonstrate that transformation efficiency is improved 500-fold by the addition of yeast telomeric sequences within the T-DNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号