首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Physical (density, viscosity) and thermophysical (heat capacity, thermal conductivity) properties of a melt of the eutectic composition (wt %) 84NaPO3 · 8Na2B4O7 · 8LiF have been investigated. It has been demonstrated that this eutectic mixture is a promising material for the use as a high-temperature heat-transfer agent.  相似文献   

2.
The xPbTe/Yb0.2Co4Sb12 compounds were prepared by the ball-milling and hot-pressed process. Electrical conductivity of the composite samples are reduced with a increase in PbTe content; and, their temperature dependence coefficients show the positive values. The maximum electrical conductivity of composite materials is ~80000 Sm−1 at 800 K. The Seebeck coefficient (absolute value) of the composite material is obviously improved with an increase in the dispersed phase (PbTe) content; the Seebeck coefficient (absolute value) of the 10PbTe sample is ~260 μVK−1 at 700 K, which increases by 13.6% relative to that of the Yb0.2Co4Sb12 sample. The thermal conductivity of the composite samples is improved due to introduction of PbTe, and the thermal conductivity of the 10PbTe sample is ~3 Wm−1 K−1 at 550 K. The maximum value of ZT is 0.78 at 700 K for the 2.5PbTe sample.  相似文献   

3.
The viscosity and rheological behavior of an ethylene glycol-water mixture based Fe3O4 nanofluid have been experimentally investigated. The nanofluids for this study were prepared by a two-step method in which Fe3O4 nanoparticles were added to a base fluid mixture consisting of 60% (w/w) ethylene glycol and 40% (w/w) water. The measurements were conducted at temperatures ranging from 288.15 to 343.15 K, and at nanoparticle volume fractions ranging from 0.0022 to 0.0055. Furthermore, the dependency of viscosity of nanofluids on shear rate was examined. The results indicate that increasing the shear rate leads to a reduction in the viscosity (shear thinning behavior). Finally, the obtained experimental data was correlated by both a thermodynamic model and a hybrid GMDH-type polynomial neural network, where the mean absolute relative deviation (MARD) of these models was calculated as 3.64% and 3.88%, respectively.  相似文献   

4.
The electrical conductivity of chalcogenide semiconductor films in the CuI-AsI3-As2Se3 and CuI-SbI3-As2Se3 systems, which have been prepared by chemical deposition from mono-n-butylamine, has been studied as a function of the temperature and film composition. It has been established that the electrical conductivity of the CuI-AsI3-As2Se3 and CuI-SbI3-As2Se3 films is predominantly determined by the copper iodide content. It has been demonstrated that the electrical properties of the chalcogenide glasses and the related films are characterized by the same values to within the experimental error, which is explained by the same model of dissolution of vitreous semiconductors in amines with the retention of the electrical properties of chalcogenide glasses after the deposition of films from their solutions.  相似文献   

5.
The Co0.88Ni0.12Sb2.91Sn0.09 compound was synthesized by a metallurgical route, and PbTe powder was prepared by the low-temperature aqueous chemical method. Composite materials (xPbTe/Co0.88Ni0.12Sb2.91Sn0.09) were prepared by the ball-milling and the hot-pressed process. Electrical conductivities of xPbTe/Co0.88Ni0.12Sb2.91Sn0.09 hot-pressed samples decrease with increase of PbTe content, but their thermal conductivities were effectively improved due to induction of disperse phase. Due to agglomeration of the disperse phase, little thermal conductivity improvement occurs for composite material with low PbTe content. The ZT values of xPbTe/Co0.88Ni0.12Sb2.91Sn0.09 samples were hardly enhanced due to the negative contribution of electrical conductivity.  相似文献   

6.
A novel and simple approach was used to disperse Cu nanoparticles uniformly in the Bi0.5Sb1.5Te3 matrix, and the thermoelectric properties were evaluated for the Cu-dispersed Bi0.5Sb1.5Te3. Polycrystalline Bi0.5Sb1.5Te3 powder prepared by encapsulated melting and grinding was dry-mixed with Cu(OAc)2 powder. After Cu(OAc)2 decomposition, the Cu-dispersed Bi0.5Sb1.5Te3 was hot-pressed. Cu nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix and acted as effective phonon scattering centers. The electrical conductivity increased systematically with increasing level of Cu nanoparticle dispersion. All specimens had a positive Seebeck coefficient, which confirmed that the electrical charge was transported mainly by holes. The thermoelectric figure of merit was enhanced remarkably over a wide temperature range of 323-523 K.  相似文献   

7.
The following investigation reports the synthesis of novel complex [Fe(opd)3]2[Ba(CN)8] and preparation of BaFe2O4 nanoparticles through thermal decomposition without using any surfactant. The complex was characterized via Furrier transform infrared spectroscopy (FT-IR), ultra violet-visible spectroscopy (UV–vis), conductivity measurement and elemental analysis. The synthesized crystals of inorganic precursor complex was transferred to furnace, where they were calcined under normal atmosphere condition at 900 °C for 4 h. Formation of BaFe2O4 was supported by FT-IR and energy-dispersive X-ray analysis. Hexagonal structure of nano-oxide was confirmed on powder X-ray diffraction. Furthermore, uniform morphology of nanocrystals were reported by scanning electron microscopy. The saturation magnetization (22 emu/g), remanent magnetization (6 emu/g) and coercivity (400 Oe) reported on vibrating sample magnetometer curve illustrates the promising industrial and medicinal applications of prepared mixed oxide.  相似文献   

8.
In this paper, for the first time, synthesis of [Ba(H2O)8][Ni(dipic)2] complex and preparation of NiBaO2 nano-oxide are reported through thermal decomposition under surfactant free condition. This novel complex was characterized by Fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy, conductivity measurement and elemental analysis. Formation of novel nanoparticles was supported by FT-IR and energy-dispersive X-ray spectroscopy and the orthorhombic structure of nanocrystals was confirmed by powder X-ray diffraction analysis. In addition, size distribution as well as uniform morphology of prepared nano-oxide were recorded by dynamic light scattering analysis and field-emission scanning electron microscopy, respectively. Magnetic features measured by vibrating sample magnetometer, illustrate superparamagnetic behavior of the oxide.  相似文献   

9.
In the present study, the crystallization behavior and thermal stability of amorphous Zr55Cu20Ni10Al10Ti5 alloy, obtained by melt-spinning, have been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The activation energy for crystallization has been evaluated by the Kissinger method, and it has been found that E x obtained from the crystallization onset temperature (T x) is lower than E p determined by the crystallization peak temperature (T P). During the continuous annealing process, ZrO and h-Al3Zr5 phases firstly precipitate from the amorphous matrix, then Zr2Ni0.66O0.33 phase forms continuously and its relative content increases with increasing annealing temperature. However, no crystalline phases have been observed during the isothermal annealing process at 733 K (below T x) for 90 min. The atomic clusters can keep the stability state through adjusting the short-range ordering.  相似文献   

10.
The electrical conductivity of CuI-Cu2Se-As2Se3 chalcogenide semiconductor films prepared through the chemical deposition from an organic solvent has been investigated as a function of the temperature and composition of the films. It has been established that the electrical properties of the chalcogenide glasses and related films are characterized by the same values within the limits of the experimental error. This result is in agreement with the model of dissolution of vitreous semiconductors in organic bases (amines), according to which the main properties of bulk (cast) chalcogenide glasses are retained in films prepared from these glasses.  相似文献   

11.
The effect of replacing lanthanum with praseodymium on the crystal chemistry parameters of solid solutions of La1 − x Pr x BaCuFeO5 + δ has been investigated using X-ray powder diffraction analysis and IR spectroscopy. The thermal expansion, electroconductivity, and thermopower of these phases have been studied in air in the temperature range 300–1100 K. The values of linear thermal expansion coefficients (LTEC) of ceramics in different temperature ranges have been determined, and the values of electric transfer parameters in the above oxides have been calculated. It has been established that replacing lanthanum with praseodymium resulted in the compression of the elementary oxide unit La1 − x Pr x BaCuFeO5 + δ, decrease in the content of labile oxygen in them (δ), decrease in nonmonotonic electroconductivity, increase in thermopower, decrease in LTEC, and difficulties in charge transfer in these phases.  相似文献   

12.
The elongational flow properties of TiO2 nanoparticle/polypropylene (PP) nanocomposite fibers were studied via melt spinning. The diameter, tension, and flow rate of fibers were directly measured and used to calculate the apparent elongational viscosity and apparent elongational strain rate using Cogswell’s theory. Thermal gravimetric analysis (TGA) was used to demonstrate that the TiO2 nanoparticles improved the thermal stability of the PP fibers. With a 1–3 wt % loading of the TiO2 nanoparticles, the PP fiber decomposition temperatures ranged from 338 °C for the pristine polymer to 342, 349, and 367 °C; the decomposition was accompamied by an initial 95 wt % weight loss. In addition, the well-distributed morphology of the TiO2 nanoparticles on the side surface of the PP matrix was observed using atomic force microscopy (AFM). At 1 wt % loading of the TiO2 nanoparticles, the surfaces of the PP nanofibers contained mono-disperse nanoparticles with sizes of 20–50 nm. Furthermore, the TiO2 nanoparticle/PP nanocomposite fibers were shown to be thermally stable and are suitable for application as an antibacterial polymer.  相似文献   

13.
The specific conductivity and tracer of diffusion of sodium and barium ions have been determined and the values of the transport numbers and correlation factor for diffusion have been calculated in two melts of the Na2O–BaO–Ga2O3–SiO2 system.  相似文献   

14.
Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, d XRD is ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.  相似文献   

15.
The addition of titanium dioxide nanoparticles (TiO2 nanoparticles) to a water-based varnish used for finishing tropical woods was studied. Three different concentrations of TiO2 nanoparticles (0%, 1.0%, and 1.5%) were evaluated. The nanoparticles were characterized by means of the transmission electron microscopy and an X-ray diffractometer. The varnish prepared was evaluated for its viscosity, adhesion of the film to the wood, water absorption, and the effects of natural weathering on the color and quality of the varnish. It was found that viscosity decreases as the concentration of TiO2 nanoparticles increases, while no variation was found in the thickness of the film. Except for Gmelina arborea and Tectona grandis, the adhesion was not statistically affected. It was found that, in the 9 species tested, incorporation of TiO2 nanoparticles decreased the values of water absorption. The evaluation of natural weathering showed that the varnish with no added TiO2 nanoparticles degraded completely after 1 year of weathering exposure, while the modified varnish film endured. Less color change was observed in lumber treated with the varnish containing TiO2 nanoparticles. The best performance of the varnish in the nine tropical woods used was observed when TiO2 nanoparticles were added at 1.5% concentration.  相似文献   

16.

Abstract  

NiFe2O4 nanoparticles stabilized by porous silica shells (NiFe2O4@SiO2) were prepared using a one-pot synthesis and characterized for their physical and chemical stability in severe environments, representative of those encountered in industrial catalytic reactors. The SiO2 shell is porous, allowing transport of gases to and from the metal core. The shell also stabilizes NiFe2O4 at the nanoparticle surface: NiFe2O4@SiO2 annealed at temperatures through 973 K displays evidence of surface Ni, as verified by H2 TPD analyses. At 1,173 K, hematite forms at the surface of the metallic cores of the NiFe2O4@SiO2 nanoparticles and surface Ni is no longer observed. Without the silica shell, however, even mild reduction (at 773 K) can draw Fe to the surface and eliminate surface Ni sites.  相似文献   

17.
Infrared (IR) guided missiles are real threat; they caused 90% of aircraft damage. Fluorocarbon polymer nanocomposite based on super-thermites can offer superior thermal signature to countermeasure IR guided missile seekers. This study reports on the sustainable fabrication of mono-dispersed colloidal Fe2O3 nanoparticles with 3 nm average particle size. Fe2O3 nanoparticles were dispersed in acetone for subsequent integration in fluorocarbon polymer. The impact of Fe2O3 content on thermal signature was evaluated using (FT-MIR 2–6 μm) spectrophotometer. Nanocomposite polymer with 8 wt% Fe2O3 offered an increase in the average intensity of α (2–3 μm) and β (4–5 μm) bands by 50 and 85% respectively to that of reference formulation. Quantification of stimulated emitting species in the combustion flame was conducted using ICT thermodynamic code. The developed nanothermite particles extended the primary reaction zone by 183%. Full discussions about combustion zones with associated exothermic chemical reactions have been represented.  相似文献   

18.
The glasses, in which oxygen was partially replaced with sulfur, have been synthesized in the Na2O-P2O5-Na2S system. The chemical and chromatographic analyses of the glasses synthesized have been performed. The temperature-concentration dependences of electrical conductivity of the glasses have been studied over a wide temperature range; the glass transition temperatures and the nature of charge carriers have been determined. The IR spectra and Raman spectra have been recorded at room temperature; the density and microhardness of the glasses and ultrasound velocity have been measured. A comparison of the electrical conductivities of the investigated glasses with those of the earlier studied glasses in the Na2O-P2O5 system has shown their fair coincidence. The introduction of sodium sulfide into the Na2O-P2O5 system is accompanied by an approximately threefold increase in electrical conductivity, although the concentrations of charge carriers (sodium ions) in the glasses amount to ∼17 and ∼26 mmol/cm3, respectively. The rise in electrical conductivity has been assumed to be caused by the increase in the degree of dissociation of polar structural chemical units including sulfide ions and by the higher mobility of sodium ions in the oxygen-free matrix.  相似文献   

19.
The temperature-concentration dependence of the electrical conductivity of glasses in the Na2SO4-NaPO3 and Na2O-P2O5 systems has been investigated. Based on the obtained experimental data (IR spectra, density, microhardness, sound velocity, and paper chromatography), it has been demonstrated that SO42− ions form terminal groups through the incorporation into polyphosphate fragments of the structure of glasses in the Na2SO4-NaPO3 system. An increase in the electrical conductivity of glasses in this system by a factor of ∼1000 (as compared to NaPO3) at 25°C and a decrease in the activation energy for electrical conduction from 1.40 to 1.10 eV have been interpreted from the viewpoint of the decrease in the dissociation energy E d of polar sulfate phosphate structural chemical fragments formed in the glass bulk upon introduction into sodium metaphosphate Na2SO4. This leads to an increase in the number of dissociated sodium ions, which are charge carriers, and to a decrease in the energy (E a) of their activation shift in the sublattice formed by sulfate phosphate fragments of the structure.  相似文献   

20.
The magnetite nanoparticles and nanocomposite “Nanotube of hydrosilicate Mg—magnetite nanoparticles—Mg-ChR-NT/Fe3O4-NP” were obtained by coprecipitation. The composition of the synthesized samples has been established by X-ray diffraction. Using transmission electron microscopy, the presence of magnetite nanoparticles has been detected both inside the NTs and at the external surface of the NT walls. The specific surface of the NTs, nanoparticles, and composite is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号