共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of mixed mode I/III loading on fracture toughness of Ti-15 at.% Al-8 at.% Nb alloy, which undergoes stress-induced martensitic transformation, was investigated for four different grain sizes. The fracture toughness under mixed mode I/III loading was found to be significantly higher than that under mode I loading in all cases. The results were explained on the basis of the stress and strain fields ahead of a mixed mode crack and its influence on the martensitic transformation zone. 相似文献
2.
Seyed Mohammad Javad Razavi Filippo Berto 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(9):1874-1888
In this paper, a new loading device for general mixed mode I/II/III fracture tests is designed and recommended. Finite element analyses are conducted on the proposed apparatus to evaluate the fracture parameters of the tested samples under various mixed mode loading conditions. The numerical results revealed that the designed loading fixture can generate wide varieties of mode mixities from pure tensile mode to pure in‐plane and out‐of‐plane shear modes. The accuracy of the proposed fixture is evaluated by conducting a wide range of fracture tests on compact tension shear (CTS) specimens made of polymethyl methacrylate (PMMA). The experimental results are then compared with the theoretical predictions obtained by the Richard criterion. A good consistency is observed between the experimental results and theoretical predictions. 相似文献
3.
The effect of temperature on tensile properties, mode I and mixed mode I/III fracture toughness of SA333 Grade 6 steel was investigated. The variation of ultimate tensile strength and strain hardening exponent with temperature as well as the appearance of serrations in the stress-strain plots indicated that dynamic strain aging regime in this steel is in the temperature range 175-300 °C at a nominal strain rate of 3 × 10−3 s−1. Both mode I and mixed mode I/III fracture toughness values were found to exhibit a significant reduction in the DSA regime. The mixed mode I/III fracture toughness was found to be significantly lower than the mode I fracture toughness at all temperatures. However, the difference between the two toughness values was much higher prior to the onset of DSA. The results are explained on the basis of the nature of deformation fields under mode I and mixed mode I/III loading as well as the fracture mechanism prevalent in these steels at different temperatures. 相似文献
4.
Transmission electron microscopy (TEM) of a bimodal near-α titanium alloy revealed the existence of retained β phase layers and silicide precipitates at the α platelet boundaries inside transformed β grains. The β to α phase transformation accompanied by the precipitation of silicide resulted in the formation of a large number of dislocations at α platelet boundaries. Orientation relationships between silicide, β phase and α phase were also identified. However high-resolution TEM (HRTEM) revealed crystal mismatches between these phases generating high strains at α platelet boundaries. The strengthening effects of the platelet boundaries are discussed in terms of dislocations slip across the boundaries. The mechanism that governs the β to α phase transformation is also discussed. 相似文献
5.
An alternative technique to that recently put forward by Germain et al. [Materials Characterization 54 (2005) 216–222] to separate the orientations of primary alpha (αp) grains from those of transformed beta (αs) grains in the near-α titanium alloy Timetal 834 is presented. This new method involves correlating orientation image maps (OIM) obtained through electron back-scattered diffraction (EBSD) with optical images of the same area. By using optical microscopy and an appropriate etch, strong contrast between αp and αs is obtained enabling regions within an OIM containing the αp and αs to be determined using relatively straightforward image analysis. Results are presented for both high-resolution microstructure analysis and texture level EBSD datasets for material subjected to a simulated industrial thermomechanical forging process. A comparison is also made between the texture datasets for both αp and αs obtained using this method and that obtained using grain size distribution acquired directly from the EBSD dataset. In this case very little difference was found between the separated textures, suggesting that in the first instance a morphological/grain size approach direct from the EBSD dataset is sufficient for observing any trends in texture evolution of both αp and αs. 相似文献
6.
《Materials Science & Technology》2013,29(7):1170-1176
AbstractThe effects of mixed mode loading (I/II) on the fracture toughness and fracture behaviour of both 6090/SiC/20p-6013 diffusion bonded laminates and 2080/SiC/20p-2080 adhesive bonded laminates tested in the crack arrester orientation were investigated. The effects of layer thickness and volume fraction ratio on the fracture behaviour under the mixed mode were also studied. The fracture behaviour under mode I/II of available similar discontinuously reinforced aluminium (DRA) materials was additionally compared to that of the laminates. The fracture behaviour of laminates under mode I/II was dependent on the volume fraction ratio and generally different from that of the monolithic and DRA. The increase in the fracture toughness of DRA by lamination with ductile layers under mode I changes somewhat under increasing load mixity, for 75/25 and 50/50 diffusion bonded laminate and 60/40 adhesive bonded laminate ABL. This results from extensive interfacial separation and delamination between the layers. 相似文献
7.
Javane Karami Majid Reza Ayatollahi Behnam Saboori 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(5):879-892
For the first time, the brittle fracture of epoxy‐based nanocomposite reinforced with MWCNTs (multi‐walled carbon nanotubes) and subjected to mixed mode II/III loading conditions is investigated. This experimental investigation is carried out using a newly developed test configuration. Araldite LY 5052 epoxy, which is a resin frequently used in aerospace industry, is utilized to fabricate pure epoxy and nanocomposite test specimens with two different MWCNTs contents of 0.1 and 0.5 wt%. The obtained experimental results reveal that adding MWCNTs to epoxy resin up to 0.5 wt% improves the fracture toughness under pure mode II and pure mode III loading with an increasing trend. This is while the improvement under mixed mode II/III loading is reduced by adding nanotubes more than 0.1 wt%. To justify the variations of fracture toughness in terms of nanoparticles content, SEM (scanning electron microscopy) photographs of the fracture surfaces of the specimens in the vicinity of the initial crack front are prepared. Additional fracture mechanisms caused by adding carbon nanotubes are discussed in detail based on the provided SEM images. 相似文献
8.
Extremely fine coherent precipitates of ordered Ti3Al and relatively coarse incoherent precipitates of S2 silicide exist together in the near α-titanium alloy, Timetal 834, in the dual phase matrix of primary α and transformed β. In order to assess the role of these precipitates, three heat treatments viz. WQ, WQ-A and WQ-OA, were given to have no
precipitates, Ti3Al and silicide and only silicide precipitates in the respective conditions. Tensile properties in the above three heat treated
conditions were determined at room temperature, 673 K and 873 K. It was observed that largely Ti3Al precipitates were responsible for increase in the yield strength and decrease in ductility in this alloy. 相似文献
9.
10.
In Situ Encapsulating α‐MnS into N,S‐Codoped Nanotube‐Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na‐Storage Performance in Half/Full Cells 下载免费PDF全文
Dai‐Huo Liu Wen‐Hao Li Yan‐Ping Zheng Zheng Cui Xin Yan Dao‐Sheng Liu Jiawei Wang Yu Zhang Hong‐Yan Lü Feng‐Yang Bai Jin‐Zhi Guo Xing‐Long Wu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(21)
Incorporation of N,S‐codoped nanotube‐like carbon (N,S‐NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α‐MnS nanoparticles (NPs) are in situ encapsulated into N,S‐NTC, preparing an advanced anode material (α‐MnS@N,S‐NTC) for lithium‐ion/sodium‐ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li‐storage properties, which is deduced by the studies of ex situ X‐ray diffraction/high‐resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α‐MnS@N,S‐NTC electrode delivers a high Li‐storage capacity (1415 mA h g?1 at 50 mA g?1), excellent rate capability (430 mA h g?1 at 10 A g?1), and long‐term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g?1) with retained morphology. In addition, the N,S‐NTC‐based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α‐MnS@N,S‐NTC also delivers high Na‐storage capacity (536 mA h g?1 at 50 mA g?1) without the occurrence of such α → β phase transition and excellent full‐cell performances as coupling with commercial LiFePO4 and LiNi0.6Co0.2Mn0.2O2 cathodes in LIBs as well as Na3V2(PO4)2O2F cathode in SIBs. 相似文献
11.
Baoyun Sun Han Li Jinquan Dong Lijuan Zhang Liming Wang Peng Wang Yuliang Zhao Chunying Chen 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(12):2362-2372
Polyhydroxylated fullerenols especially gadolinium endohedral metallofullerenols (Gd@C82(OH)22) are shown as a promising agent for antitumor chemotherapeutics and good immunoregulatory effects with low toxicity. However, their underlying mechanism remains largely unclear. We found for the first time the persistent uptake and subcellular distribution of metallofullerenols in macrophages by taking advantages of synchrotron‐based scanning transmission X‐ray microscopy (STXM) with high spatial resolution of 30 nm. Gd@C82(OH)22 can significantly activate primary mouse macrophages to produce pro‐inflammatory cytokines like IL‐1β. Small interfering RNA (siRNA) knockdown shows that NLRP3 in?ammasomes, but not NLRC4, participate in fullerenol‐induced IL‐1β production. Potassium efflux, activation of P2X7 receptor and intracellular reactive oxygen speciesare also important factors required for fullerenols‐induced IL‐1β release. Stronger NF‐κB signal triggered by Gd@C82(OH)22 is in agreement with higher pro‐IL‐1β expression than C60(OH)22. Interestingly, TLR4/MyD88 pathway but not TLR2 mediates IL‐1β secretion in Gd@C82(OH)22 exposure confirmed by macrophages from MyD88?/?/TLR4?/?/TLR2?/? knockout mice, which is different from C60(OH)22. Our work demonstrated that fullerenols can greatly activate macrophage and promote IL‐1β production via both TLRs/MyD88/NF‐κB pathway and NLRP3 inflammasome activation, while Gd@C82(OH)22 had stronger ability C60(OH)22 due to the different electron affinity on the surface of carbon cage induced by the encaged gadolinium ion. 相似文献
12.
13.
14.
15.
First-principles methods are employed to investigate the structure relaxation and the electronic structure of a N impurity in an 1 0 0 edge dislocation core (DC) system in α-iron. A 96-atom cluster model is used to simulate the local environment of N impurity in the edge dislocation. By use of the DMol method, we obtained an optimized atomic configuration for the system by calculating the forces on N impurity and its neighboring Fe atoms, and by minimizing the total energy of the cluster model. The optimization results show that the N impurity moves away from compression region to a stable position in the dilated region. By use of the discrete variational (DV) method, we calculated energetic parameters (structural energy and interatomic energy) and charge distribution. From these results, one can find that N impurity has a strong interaction with its adjacent Fe atoms in the DC system. Moreover, notable charge redistribution between the N impurity and Fe atoms indicates the formation of N impurity–Fe dislocation complex, which implies the trapping effect of DC on N impurity. 相似文献
16.
17.
Monodisperse α-Fe2O3 nanoparticles have been successfully prepared by hydrothermal synthetic route using FeCl3, CH3COONa as reagents and reacted at 200 °C for 12 h. The morphology and structure of products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the α-Fe2O3 nanoparticles were single-crystalline hexagonal structure and average diameters were about 80 nm. Magnetic properties have been detected by a vibrating sample magnetometer at room temperature. The nanoparticles exhibited a ferromagnetic behavior with the coercive force (Hc), saturation magnetization (Ms) and remanent magnetization (Mr) was 185.28 Oe and 0.494 emu/g, 0.077 emu/g. 相似文献
18.
Okorn Mekasuwandumrong Nitikon Wongwaranon Joongjai Panpranot Piyasan Praserthdam 《Materials Chemistry and Physics》2008,111(2-3):431-437
In the present study, Ni-modified α-Al2O3 with Ni/Al ratios of 0.3 and 0.5 were prepared by sol–gel and solvothermal method and then were impregnated with 0.3 wt.% Pd. Due to different crystallization mechanism of the two preparation methods used, addition of nickel during preparation of α-Al2O3 resulted in various species such as NiAl2O4, mixed phases between NiAl2O4 and α-Al2O3, and mixed phases between NiAl2O4 and NiO. As revealed by NH3-temperature programmed desorption, formation of NiAl2O4 drastically reduced acidity of alumina, hence lower amounts of coke deposited during acetylene hydrogenation was found for the Ni-modified α-Al2O3 supported catalysts. For any given method, ethylene selectivity was improved in the order of Pd/Ni–Al2O3-0.5 > Pd/Ni–Al2O3-0.3 > Pd/Ni–Al2O3-0 Pd/α–Al2O3-commercial. When comparing the samples prepared by different techniques, the sol–gel-made samples showed better performances than the solvothermal-derived ones. 相似文献
19.
Xiao-gui Feng Qian-ge He 《Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment》2009,609(2-3):165-171
α Spectrometry is one of the most important and sensitive techniques for the assay of α-emitting nuclides, but various complicated procedures are often required for preparation of uniform thin plate source. Liquid scintillation counting (LSC) with pulse shape analysis (PSA) combining extraction is much simpler, more rapid and accurate technique, but the extraction processes are often very long. By combining extraction, LSC with PSA, and α spectrometry, we proposed a new approach to determine 237Np, 238–240Pu and 241Am. The new approach includes an extraction process of three steps for blind samples or of only one step for those samples without tailing interference with α spectra. Moreover, no complicated procedure is required for α plate source preparation because even non-uniform plate source is feasible for the new approach. The approach has taken advantages of high counting efficiency (nearly 100%) of LSC for α-radiation, high energy resolution of α spectrometry and high recovery yield of actinides by trialkylphosphine oxide (TRPO) extraction. The approach with one step extraction can be expected to determine 237Np, 238–240Pu, 241Am and 244Cm simultaneously. 相似文献
20.
In β1–Cu–Zn–Al single crystals the course of cyclic martensititic transformation ‘β1 parent phase↔γ′1 martensite’ induced by tensile stress were studied with use of X-ray topography, light microscopy and etch pits. Two groups of single crystals were studied. The first one (OR) contained single crystals of subgrain boundaries parallel to the direction of elongation [001], the second one (RA) consisted of single crystals of random subgrain boundaries orientations. Single crystals from the RA group cracked after about 300 cycles of martensitic transformation; single crystals from the OR group did not crack even after 1200 cycles. In OR single crystals changes of dislocation density inside the subgrains caused by cycling occurred much more slowly than in the RA single crystals. This has been related to the dislocation movement from inside the subgrains to their boundaries. 相似文献