首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
使用MRH-3型环-块摩擦磨损试验机在不同实验条件下对纳米氧化铝(Nano-Al_2O_3)与聚苯硫醚(PPS)共混改性聚四氟乙烯(PTFE)复合材料的摩擦磨损状况进行了测试并在线测量了摩擦表层瞬时温度。采用扫描电镜对磨损表面形貌和转移膜形貌进行了观察与分析。结果表明,复合材料摩擦磨损特性与纳米粒子含量及摩擦表层温度有关;3%(体积分数)Nano-Al_2O_3/PPS/PTFE复合材料的耐磨性最佳;摩擦过程中表层瞬时温度呈现3个阶段:线性升温、温度缓慢变化和稳定阶段,且升温幅度随Nano-Al_2O_3含量的增加而增大;当载荷和速度分别超过200 N和2 m/s时,复合材料磨损率与摩擦表层温度均大幅上升,但摩擦热平衡所需时间却大幅缩短,此时摩擦表面形貌与转移膜形貌均发生明显变化;当环境温度在25~140℃变化时复合材料摩擦性能变化不显著。  相似文献   

2.
用不同体积分数的纳米ZrO_2和聚醚醚酮(PEEK)颗粒填充改性聚四氟乙烯(PTFE)复合材料。使用环-块摩擦磨损试验机测试PTFE复合材料在滑动速度为2 m/s、载荷为200 N的试验条件下的摩擦学性能。获取不同阶段摩擦学性能的数据,计算出在整个试验过程中样品的瞬时磨损率。利用扫描电镜观察不同试验阶段对偶钢环表面形貌的变化图像并进行分析。利用仿真模拟软件(ABAQUS)对摩擦过程中PTFE复合材料的接触应力变化进行分析。结果表明,纳米ZrO_2和PEEK颗粒可以协同改善PTFE复合材料的摩擦学性能。特别是添加8%的纳米ZrO_2和20%的PEEK能使PTFE复合材料同时获得最佳的耐磨性(1.29×10~(-6) mm~3/Nm)和较低的摩擦系数。在摩擦试验的后期PTFE复合材料的瞬时磨损率突然急剧上升。根据瞬时磨损率、磨损表面、转移膜形貌和磨屑形态特征的变化规律,将整个磨损过程分为3个阶段(低磨损阶段、过渡磨损阶段和严重磨损阶段)。  相似文献   

3.
利用MMU-10G端面高温摩擦磨损试验机,对聚酰亚胺(PI)和石墨共混改性聚四氟乙烯(PTFE)复合材料的摩擦学性能进行了测试,利用扫描电镜观察摩擦副表面的磨痕和复合材料的转移情况。同时研究最佳配比PTFE基复合材料在不同试验条件下的摩擦学性能,并测量了摩擦副表面的瞬时温度。结果表明,PI可以大幅度提高填充PTFE的耐磨性能,但PI含量增加不利于非金属转移膜的形成;当PI含量约为25%时,和石墨一起填充PTFE,复合材料的摩擦学性能最佳;当载荷大于300N和线速度大于4m/s时,摩擦表温度均高于125℃,复合材料进入高温摩擦阶段,摩擦表面发生蠕变,转移膜出现不同程度的破坏;PI填充PTFE复合材料摩擦性能在温度低于75℃时变化不明显。  相似文献   

4.
利用MMU-10G端面高温摩擦磨损试验机,对聚酰亚胺(PI)和石墨共混改性聚四氟乙烯(PTFE)复合材料的摩擦学性能进行了测试,利用扫描电镜观察摩擦副表面的磨痕和复合材料的转移情况。同时研究最佳配比PTFE基复合材料在不同试验条件下的摩擦学性能,并测量了摩擦副表面的瞬时温度。结果表明,PI可以大幅度提高填充PTFE的耐磨性能,但PI含量增加不利于非金属转移膜的形成;当PI含量约为25%时,和石墨一起填充PTFE,复合材料的摩擦学性能最佳;当载荷大于300N和线速度大于4m/s时,摩擦表温度均高于125℃,复合材料进入高温摩擦阶段,摩擦表面发生蠕变,转移膜出现不同程度的破坏;PI填充PTFE复合材料摩擦性能在温度低于75℃时变化不明显。  相似文献   

5.
采用冷压成型烧结工艺法,制备纳米碳化锆(Nano-ZrC)与聚苯硫醚(PPS)填充改性聚四氟乙烯(PTFE)基复合材料。采用邵氏硬度仪、万能材料试验机、扫描电镜分别表征了复合材料的显微结构及力学特性;使用MRH-3型环-块摩擦磨损试验机测试了复合材料在不同实验条件下的摩擦学性能,并通过非接触3D轮廓仪及X射线光电子能谱仪对磨损表面及转移膜进行了检测分析。结果表明:随着纳米碳化锆含量的增加,复合材料硬度上升,拉伸强度、断裂伸长率及冲击强度下降;纳米碳化锆使得复合材料耐磨性得到显著提升,且其体积分数为5%时复合材料摩擦学性能最佳;纳米碳化锆增强了转移膜的物理粘附能力,并促进其化学吸附作用;当载荷提升至300 N,摩擦速度提升至3 m/s时,复合材料摩擦磨损性能大幅降低,转移膜形貌发生明显变化;环境温度(25~140℃)对复合材料摩擦磨损性能影响不明显。  相似文献   

6.
将聚酰亚胺(PI)、石墨和铜粉按照不同比例混合填充聚四氟乙烯(PTFE)形成新的复合材料,分别在MMU-2端面摩擦磨损试验机上进行摩擦性能测试,并将磨损后的试样在JSM-5600LV扫描电子显微镜下观察摩擦表面的磨痕和复合材料的转移情况,确定出最佳配比。为了研究试验条件对材料摩擦学性能的影响,对最佳配比PTFE基复合材料通过改变试验条件再次进行试验。结果表明,聚酰亚胺可增强填充PTFE的耐磨性,Cu可增加转移膜与对偶件结合的强度,而石墨有利于转移膜的形成;当PI的质量分数为25%,石墨质量分数为5%,Cu粉质量分数为5%时,材料的摩擦学性能表现最好;当滑动速度4.5m/s,载荷300N时,试样表面温度均大于120℃,复合材料进入高温摩擦阶段,摩擦表面发生蠕变,转移膜出现灼烧现象。  相似文献   

7.
采用高速机械搅拌的方式充分混合原料,然后用模具将混合好的材料冷压成型,再通过一定的烧结程序制备不同体积含量的聚醚醚酮(PEEK)和纳米TiO2协同填充改性的聚四氟乙烯(PTFE)复合材料试样。利用MRH-3摩擦磨损实验机在不同实验条件下对试样进行摩擦学性能的测试。磨损后用QuantaFEG450扫描电镜对钢环表面的摩擦形貌进行观察与分析。实验结果表明,填充PEEK可大幅降低PTFE复合材料的体积磨损率,但复合材料的摩擦系数却随PEEK含量的增加而表现出逐渐上升的趋势。用不同含量的纳米TiO2填充10%PEEK/PTFE,摩擦系数和体积磨损率都表现出随纳米TiO2含量的增加而逐步上升的趋势,其中2%Nana-TiO2/10%PEEK/PTFE复合材料的摩擦系数和体积磨损率最小。当滑动速度和载荷分别超过2m/s和200N后对复合材料的磨损率有显著地影响,而环境温度在25~120℃范围内变化对磨损率和摩擦系数的影响均不明显。  相似文献   

8.
研究聚酰亚胺、石墨填充PTFE复合材料,将复合材料和HT250材料配副,利用MMU-10G摩擦磨损试验机测量在不同载荷、不同转速的工况下,摩擦副摩擦系数、体积磨损率、温度的变化情况。然后用JSM-5600LV扫描电子显微镜对磨损后的试样表面和对偶件表面进行形貌分析。结果表明,填充PTFE摩擦学性能明显优于纯PTFE;用聚酰亚胺和石墨填充PTFE复合材料在试验过程中,载荷、转速均存在极限值,当载荷超过300 N,转速超过1 500 r/min时,摩擦系数和体积磨损率同时大幅度提高;同时当试样表面温度超过140℃时,复合材料形成的转移膜会出现烧灼。  相似文献   

9.
采用热压成型制备了10%炭纤维和不同二硫化钼含量填充的聚酰亚胺(PI)复合材料,利用M-2000摩擦磨损试验机考察了炭纤维、二硫化钼填充PI复合材料的摩擦学性能,利用扫描电子显微镜分析了PI复合材料的磨损表面及对偶表面转移膜形貌,并探讨了炭纤维、二硫化钼对PI复合材料的摩擦学性能影响。结果表明,炭纤维、二硫化钼具有协同效应,填充PI复合材料具有摩擦系数小,磨损率低的特点;当二硫化钼的含量为35%,炭纤维含量10%时,PI复合材料可以获得最好的摩擦学性能。  相似文献   

10.
通过机械共混、冷压成型、烧结的方法制备聚醚醚酮(PEEK)与纳米Si O2颗粒共同填充改性聚四氟乙烯(PTFE)复合材料试样。利用MRH-3型环-块摩擦磨损实验机对不同配方比例的复合材料在不同实验条件下进行摩擦学性能实验。利用扫描电镜对试样磨损后的摩擦表面形貌和钢环表面的转移膜进行观察和分析。结果表明,填充5%PEEK的PTFE复合材料的摩擦系数达到最低值;10%PEEK/PTFE复合材料中添加不同体积比的纳米Si O2填料可以显著地降低材料的体积磨损率,其中5%Nano-Si O2/10%PEEK/PTFE复合材料的体积磨损率最小;载荷和速度的变化对Nano-Si O2/PEEK/PTFE复合材料的摩擦磨损性能的影响显著,而环境温度的变化对该复合材料的摩擦系数与磨损率的影响不明显。  相似文献   

11.
铜-石墨复合材料的摩擦学性能和磨损机理   总被引:2,自引:0,他引:2  
采用机械合金化后冷压成型和放电等离子烧结两种不同工艺分别制备铜-石墨复合材料,在销盘式实验机上进行材料的摩擦实验,并通过扫描电镜、X射线光电子能谱仪(XPS)分析摩擦表面的形貌和化学性质。结果表明:随着石墨含量的增加,复合材料的摩擦系数与磨损率显著下降;随烧结温度的升高,摩擦系数与磨损率都呈下降趋势。摩擦系数与磨损率的显著改善是由于在磨损过程中形成一层覆盖表面的润滑膜。当形成的润滑膜几乎覆盖住整个磨损表面时,该润滑膜能够抑制滑动界面处金属与金属接触,使摩擦磨损特性得以改善。  相似文献   

12.
利用树脂传递模塑(RTM)工艺制备了三维编织炭纤维/环氧(C3D/EP)复合材料.采用MM-200型摩擦磨损试验机研究了该材料润滑条件下的摩擦磨损性能,探讨了载荷及滑动速度等外界因素的影响;并采用XL30 ESEM电子显微镜观察磨损表面形貌,分析了其磨损机理.结果表明,润滑条件下复合材料的摩擦磨损性能远优于干摩擦,且磨合期较短;随着载荷的增加,复合材料的摩擦系数和比磨损率降低,但滑动速度对摩擦磨损性能的影响很小;润滑条件下的磨损机理主要是磨粒磨损.  相似文献   

13.
The influence of plastic deformation of the substrate on the tribological properties of diamond like carbon (DLC) films was investigated in DLC films-steel substrate system. The tribological properties of DLC films deposited on different hardness steel were evaluated by a ball on disk rotating-type friction tester at room temperature under different environments. In dry nitrogen, DLC films on soft steel exhibited excellent tribological properties, especially obvious under high load (such as 20 N and 50 N). However, DLC films on hard steel were worn out quickly at load of 20 N. Plastic deformation was observed on soft steel after tribological tests. The width and depth of plastic deformation track increased with increase of the experimental load. Super low friction and no measurable wear were kept in good condition even large plastic deformation under high load conditions in DLC films-soft steel system. In open air, DLC films on soft steel exhibited high coefficient of friction and DLC films on ball were worn out quickly. Plastic deformation was not observed on soft steel because the contact area increased and the thick hardened layer on contact surface were formed by DLC films and debris particles together on the steel substrate. The wear track on steel became deep and wide with increase of loads and DLC films were worn out. The experimental results showed that super low friction and high wear resistance of DLC films on soft steel can be attributed to the good adhesion and plastic deformation. Plastic deformation played an active role in the tribological properties of DLC films on soft steel in the present work.  相似文献   

14.
润滑条件下三维编织炭复合材料的摩擦学特性   总被引:1,自引:0,他引:1  
采用MM-200型摩擦磨损试验机研究了润滑条件下三维编织炭/环氧复合材料的摩擦磨损性能,探讨了载荷及滑动速度等外界因素的影响;并采用XL30 ESEM电子显微镜观察磨损表面形貌,分析了其磨损机理.结果表明,润滑条件下复合材料的摩擦磨损性能远优于干摩擦,且磨合期较短;随着载荷的增加,复合材料的摩擦系数和比磨损率降低,但滑动速度对摩擦磨损性能的影响很小;润滑条件下的磨损机理主要是磨粒磨损.  相似文献   

15.
梯度自润滑复合材料在不同滑动摩擦下的摩擦学特性   总被引:3,自引:0,他引:3  
梯度自润滑复合材料是一种新型润滑材料,利用粉末冶金工艺设计和制备了该材料,考察了其在不同摩擦条件下的摩擦学特性,并对其摩擦磨损机理进行了分析和研究.结果表明:梯度自润滑复合材料随着复合固体润滑剂含量的增多,摩擦学性能明显改善,但润滑剂含量过高将导致材料表面硬度过低;该材料适用于高载倚下的润滑部件;脂润滑条件下,复合固体润滑剂与润滑脂结合在摩擦面上形成的膏状润滑膜使梯度自润滑复合材料的摩擦学性能显著改善;在脂润滑高载荷条件下,梯度自润滑复合材料的磨损主要发生在磨损初期,之后磨损极小,摩擦系数也趋于减小.  相似文献   

16.
不同制动速度下C/C复合材料摩擦面研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用MM-1000型摩擦磨损试验机测试了粗糙层基体炭C/C复合材料试样在不同制动速度下的摩擦磨损性能, 借助微区拉曼光谱和扫描电镜研究了试样摩擦面的结构与形貌。结果表明粗糙层基体炭C/C复合材料具有优异的摩擦速度特性。试样的摩擦系数和试验后摩擦面上碳原子的有序度无直接对应关系, 制动速度对摩擦系数的影响应归因于制动速度对摩擦面温升和摩擦膜厚度及完整性的影响。5m/s的低制动速度下, 试样因吸附水气摩擦系数持续低值(0.15), 摩擦面上无连续摩擦膜产生; 10m/s的制动速度下水气被解吸附, 摩擦面出现多层厚膜, 摩擦系数达到峰值(0.5), 此后, 随制动速度增加, 摩擦膜减薄, 材料磨损量呈下降趋势; 当制动速度增加到25m/s及以上, 摩擦面的温升导致氧化质量损失和线磨损增加, 摩擦系数也稍有衰减(0.3)。   相似文献   

17.
炭/炭刹车副表面硬度对摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
对等温CVD沉积所得两种不同结构的炭/炭复合材料,不同表面硬度下的摩擦磨损性能进行了研究.其中A材料是光滑层结构,B材料是粗糙层和光滑层的混合结构.摩擦试验在实验室规模的MM-1000摩擦试验机上进行.试验表明:随着热处理温度的提高,不同材料的表面硬度均在下降;但在经历相同热处理温度后,B材料的表面硬度比A材料的低;表面硬度较低的B材料塑性较强,摩擦面上的磨屑易于形成致密、连续的摩擦膜,有利于保持稳定而较高的摩擦系数.  相似文献   

18.
The tribological properties of carbon fiber reinforced polyimide (PI) composites with different MoS2 containing sliding against GCr15 steel were comparatively evaluated on an M-2000 model ring-on-block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. It was found that small incorporation of MoS2 was harmful to the improvement of friction and wear behaviors of carbon fiber reinforced PI composites. However, it was found that the increasing filler of MoS2 significantly improved the wear resistance and decreased the friction coefficient of carbon fiber reinforced PI composites. It was also found that the tribological properties of MoS2 and short carbon fiber reinforced PI composites were closely related with the sliding condition such as sliding rate and applied load.  相似文献   

19.
为改善聚四氟乙烯(PTFE)复合材料的性能,将青铜粉(Bronze)、聚酰亚胺(PI)填充PTFE材料对其进行改性,采用冷压成型、自由烧结工艺分别制备了2种固体润滑剂,在改装的M-2000型摩擦磨损试验机上考察了2种固体润滑剂的二次转移性能;用扫描电子显微镜对上试样的磨损表面进行观察和分析。结果表明:PTFE复合材料作固体润滑剂所形成的二次转移能够改善体系的摩擦学性能,填料的加入增强了PTFE复合材料转移膜与底材的结合强度,起到了保护金属表面的作用;PTFE/Bronze比PTFE/PI的复合材料更适宜作润滑源使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号