共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
语音增强主要用来提高受噪声污染的语音可懂度和语音质量,它的主要应用与在嘈杂环境中提高移动通信质量有关.传统的语音增强方法有谱减法、维纳滤波、小波系数法等.针对复杂噪声环境下传统语音增强算法增强后的语音质量不佳且存在音乐噪声的问题,提出了一种结合小波包变换和自适应维纳滤波的语音增强算法.分析小波包多分辨率在信号频谱划分中... 相似文献
3.
提出了一种改进的语音增强算法,该算法以基于先验信噪比估计的维纳滤波法为基础。首先通过计算无声段的统计平均得到初始噪声功率谱;其次,计算语音段间带噪语音功率谱,并平滑处理初始噪声功率谱和带噪语音功率谱,更新了噪声功率谱;最后,考虑了某频率点处噪声急剧增大的情况,通过计算带噪语音功率谱与噪声功率谱的比值,自适应地调整噪声功率谱。将该算法与其他基于短时谱估计的语音增强算法进行了对比实验,实验结果表明:该算法能有效地减少残留噪声和语音畸变,提高语音可懂度。 相似文献
4.
5.
将非平稳噪声估计算法以及基于听觉掩蔽效应得到的噪声被掩蔽概率应用于维纳滤波语音增强中,提出了一种听觉掩蔽效应和维纳滤波的语音增强方法。几种噪声背景下对语音增强的客观测试表明,提出的算法相比较于传统的维纳滤波语音增强算法而言不但可以提高语音信噪比,而且可以明显减少语音失真。 相似文献
6.
7.
针对复杂背景噪声下语音增强后带有音乐噪声的问题,提出一种子空间与维纳滤波相结合的语音增强方法。对带噪语音进行KL变换,估计出纯净语音的特征值,再利用子空间域中的信噪比计算公式构成一个维纳滤波器,使该特征值通过这个滤波器,从而得到新的纯净语音特征值,由KL逆变换还原出纯净语音。仿真结果表明,在白噪声和火车噪声的背景下,信噪比都比传统子空间方法有明显提高,并有效抑制了增强后产生的音乐噪声。 相似文献
8.
前端噪声处理直接关系着语音识别的准确性和稳定性,针对小波去噪算法所分离出的信号不是原始信号的最佳估计,提出一种基于子带谱熵的仿生小波变换(BWT)去噪算法。充分利用子带谱熵端点检测的精确性,区分含噪语音部分和噪声部分,实时更新仿生小波变换中的阈值,精确地区分出噪声信号小波系数,达到语音增强目的。实验结果表明,提出的基于子带谱熵的仿生小波语音增强方法与维纳滤波方法相比,信噪比(SNR)平均提高约8%,所提方法对噪声环境下语音信号有显著的增强效果。 相似文献
9.
《计算机应用与软件》2017,(3)
为减少维纳滤波在语音增强中残留的"音乐噪声",将多窗谱估计和改进的维纳滤波方法结合,并进行语音合成。设计了基于多窗谱估计的改进维纳滤波语音增强方法,该方法采用多窗谱估计噪声功率谱,改进维纳滤波降噪得到增强语音,以及重叠相加语音合成,并给出仿真对比验证。结果表明,基于多窗谱估计的改进维纳滤波方法在抑制噪声,减少音乐噪声方面优于基于维纳滤波的增强算法和基于多窗谱估计的改进谱减法的增强算法。 相似文献
10.
11.
12.
针对浊音、清音和噪声的不同特性,结合听觉掩蔽并使用随尺度变化的多阈值对语音信号进行处理.提出了多小波门限估计法,该方法针对不同声音成分,使用不同的与尺度有关的缩小因子调节门限值;通过估计各频带内的信噪比,实现了阈值的时频自适应变化;用巴克小波包分解法模拟人耳临界带特性,用小波谱减法对带噪语音进行预增强,采用Johnst... 相似文献
13.
针对非平稳噪声环境和低信噪比的情况,提出了一种基于低频区语音特性的非平稳噪声估计方法,通过构造一个时变的权值,实现对噪声的实时估计,同时结合人耳听觉掩蔽效应,利用估计出的噪声自适应设定增强系数。仿真实验表明,该方法能够较好地抑制背景噪声,提高信噪比,减少语音失真。 相似文献
14.
为了克服低信噪比输入下,语音增强造成清音弱分量损失,导致信号重构失真的问题,提出了一种新的语音增强方法。该方法采用小波包拟合语音感知模型的临界带,按子带能量对语音清浊音分离,然后对清音和浊音信号分别作8层和4层小波包分解,在阈值计算上采用Bark子带小波包自适应节点阈值算法,在Bark子带实时跟踪噪声水平,有效保护清音中高频弱分量,减少失真。通过与传统语音增强方法的仿真对比实验,证实该方法在低信噪比输入时,具有明显优势,输出信噪比高,语音失真度低。将该方法与谱减法相结合,进行语音二次增强,能进一步提高增强语音质量。 相似文献
15.
基于谱减法的听觉模拟的语音增强 总被引:1,自引:0,他引:1
提出了一种适于低信噪比下的语音增强算法。该算法以传统的谱减法为基础,所用减参数是根据人耳听觉掩蔽效应提出的且是自适应的。对该算法进行了客观和主观测试,结果表明:相对于传统的谱减法,该算法能更好地抑制残留噪声和背景噪声,特别是对低信噪比的语音信号。 相似文献
16.
端点检测是语音识别过程中的一个重要的环节,因此改善端点检测的效果一直是语音识别领域的一个重要课题。为了提高在背景噪声下语音信号端点检测的准确率,提出了一种基于小波包的谱熵端点检测方法。该方法对语音信号进行小波包变换,将每帧信号分解成多个子带,在此基础上计算每帧信号的子带能量,通过子带能量所占比例求出每帧信号的谱熵,最后确定新的门限值。仿真实验表明,该方法比传统方法更有效、更优越,能够比较准确地检测语音信号。 相似文献