首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In order to examine the relationship between local adenosine concentrations before, during, and after ischemia and the extent of ischemic myocardial damage, measurements of interstitial fluid (ISF) nucleosides were made using microdialysis probes implanted in the ischemic region of isoflurane anesthetized Micropigs undergoing 60' coronary artery occlusion (CAO) and 3 h of reperfusion (REP). Nucleoside concentrations in the dialysate collected from the microdialysis probes were used as an index of ISF levels. Dialysate nucleoside concentrations (ADO, inosine and hypoxanthine), myocardial infarct size, and myocardial blood flow (MBF) were determined in control animals (n = 6), animals preconditioned with a single 10' cycle of CAO and REP (PC, n = 6), and those treated with the adenosine deaminase inhibitor pentostatin (n = 6, 0.2 mg/Kg i.v. 30' prior to CAO). The brief PC occlusion resulted in a transient but significant increase in dialysate ADO (6.7 +/- 1.8 microM vs. 0.67 +/- 0.1 microM at baseline). Pentostatin administration had no significant effect on either dialysate nucleosides or MBF at baseline. During the 60' CAO, dialysate ADO increased in control animals. In PC animals, however, dialysate ADO during CAO was lower than control. Pretreatment with pentostatin resulted in a six-fold augmentation in dialysate ADO during the 60 min CAO when compared to the control values (110.62 +/- 30.2 microM vs. 16.31 +/- 2.1 microM at 60 min of ischemia). Pentostatin also resulted in a significant reduction in the accumulation of inosine and hypoxanthine, indicating inhibition of adenosine deaminase activity. There were no significant differences in MBF between groups at any time point. Following 3 h REP, infarct size was 35.4 +/- 5.5%, 8.1 +/- 1.5% and 8.3 +/- 1.8% of the region at risk in control, PC, and pentostatin groups, respectively. These data suggest that marked increase in ISF ADO during CAO, may be as effective in reducing INF as a modest increase in ISF ADO prior to prolonged CAO.  相似文献   

2.
To characterize the effects of renal sympathetic nerve activation (RSNA) on renal purine secretion, 13 perfused rat kidneys were stimulated with periarterial electrodes at 7 Hz for 3 min, and purine secretion was determined by measuring with high-performance liquid chromatography purines in the renal venous perfusate 1 min before and during the last minute of RSNA. RSNA significantly increased renal perfusion pressure and significantly increased the secretion of adenosine and adenosine metabolites (inosine, hypoxanthine, and xanthine) by 2- to 5-fold. To investigate the participation of alpha- and beta-adrenoceptors in this response, four groups of perfused kidneys (n = 5/group) were pretreated with either vehicle, prazosin (alpha1-adrenoceptor antagonist; 0.03 microM), phentolamine (alpha1/2-adrenoceptor antagonist; 3 microM), or propranolol (beta1/2-adrenoceptor antagonist; 0.1 microM), and purine secretion was measured before and during RSNA at 1, 3, 5, 7, and 9 Hz. Prazosin, phentolamine, and propranolol abolished the RSNA-induced increase in the secretion of adenosine, inosine, hypoxanthine, and xanthine. In contrast, prazosin and phentolamine nearly abolished, whereas propranolol only slightly reduced, renal vascular responses to RSNA. Our results indicate that RSNA increases renal purine secretion via a mechanism that requires both alpha- and beta-adrenoceptors. It is well known that in the kidney adenosine activates renal afferent nerves, enhances renovascular responses to norepinephrine and angiotensin II, and increases sodium reabsorption; therefore, RSNA-induced adenosine production may contribute to the hypertensive effects of RSNA. Moreover, the antihypertensive effects of beta-adrenoceptor antagonists may in part be due to inhibition of RSNA-induced renal adenosine production.  相似文献   

3.
OBJECTIVE: Microdialysis and 31P-NMR spectroscopy were used to test opposing hypotheses that ischemic preconditioning inhibits adenine nucleotide degradation and purine efflux, or that preconditioning activates cardiovascular adenosine formation to provide enhanced cardioprotection. METHODS: 31P-NMR spectra and matching interstitial fluid (ISF) or venous effluent samples were obtained from Langendorff perfused rat hearts. Control hearts (n = 9) underwent 30 min of global normothermic ischemia and 30 min reperfusion. Preconditioned hearts (n = 6) were subjected to a 5 min ischemic episode and 10 min reflow prior to 30 min ischemia and 30 min reperfusion. Effects of repetitive ischemia-reperfusion (3 x 5 min ischemic episodes) on adenosine levels and energy metabolism were also assessed (n = 8). RESULTS: Preconditioning improved post-ischemic recovery of heart rate x left ventricular developed pressure (71 +/- 5 vs 43 +/- 8%, P < 0.05) and end-diastolic pressure (14 +/- 3 vs 29 +/- 4 mmHg, P < 0.05) compared with control hearts, respectively. Preconditioning did not alter intracellular ATP, phosphocreatine (PCr), inorganic phosphate (Pi), H+ or free Mg2+ during global ischemia, but improved recoveries of PCr, Pi, and delta GATP on reperfusion. ISF adenosine increased more than 20-fold during 30 min ischemia. The 5 min preconditioning episode increased ISF adenosine 3-fold, and reduced ISF adenosine and inosine during subsequent prolonged ischemia by up to 75%. Venous purine levels during reperfusion were also reduced by preconditioning. Accumulation of adenosine in ISF and venous effluent during repetitive ischemia was progressively reduced despite comparable changes in substrate for adenosine formation via 5'-nucleotidase, (5'-AMP), and in allosteric modulators of this enzyme (Mg2+, H+, Pi, ADP, ATP). CONCLUSIONS: (i) Ischemic preconditioning reduces interstitial and vascular adenosine levels during ischemia-reperfusion, (ii) reduced ISF adenosine during ischemia is not due to reduced ischemic depletion of adenine nucleotides in preconditioned rat hearts, (iii) preconditioning may inhibit adenosine formation via 5'-nucleotidase in ischemic rat hearts, and (iv) improved functional recovery with preconditioning is unrelated to metabolic/bioenergetic changes during the ischemic insult, but may be related to improved post-ischemic recovery of [Pi] and delta GATP in this model.  相似文献   

4.
Exogenous adenosine produces numerous beneficial effects in ischemic myocardium, but pharmacological doses of adenosine are required to exert these effects. This is thought to be due to the rapid metabolism of adenosine by coronary endothelium, although there is no direct evidence supporting this hypothesis in the ischemic/reperfused heart. The purpose of this study was to determine the relationship between vascular and interstitial fluid (ISF) adenosine levels during adenosine-induced cardioprotection. Isolated perfused rat hearts were submitted to 30-min global normothermic ischemia and 30- min reperfusion. Left ventricular developed pressure (LVDP) was measured with a fluid-filled latex balloon, and ISF adenosine was estimated with cardiac microdialysis. Control hearts were compared with hearts treated with increasing doses of adenosine (1, 10 and 100 microM) for 10 min immediately preceding ischemia. Adenosine produced dose-dependent increases in coronary effluent adenosine levels, but only 10 and 100 microM adenosine increased dialysate adenosine concentrations. All adenosine doses increased coronary flow to the same extent, but only the two higher doses decreased spontaneous heart rate. Control and 1 microM adenosine-treated hearts recovered 60 +/- 3% and 46 +/- 7% of preischemic LVDP, respectively, whereas 10 and 100 microM adenosine improved recovery to 80 +/- 5% and 90 +/- 4% of preischemic LVDP, respectively, after 30-min reperfusion. Because ISF bathes the cardiac myocytes, these results are consistent with the hypothesis that adenosine protects the ischemic rat heart via the activation of cardiac myocyte adenosine receptors.  相似文献   

5.
Retroperfusion of the superficial coronary venous system was studied in 44 canine fibrillating in vivo, normothermic preparations, with exclusion of the systemic circulation using cardiopulmonary bypass techniques in order to assess its value as a method of myocardial revascularization. Perfusion of either the isolated aortic arch via a brachiocephalic cannula or of the coronary sinus through the free end of a vein anastomosed to the atrial rim of the sinus was performed for 1 h at 100 cm3/min in groups II-IV following 30 min of anoxia. Oxygen uptake, vascular resistance, venous outflow and venous enzyme levels (CPK, GDH) were studied. Group I controls (antegrade perfusion, no anoxia) showed continued aerobic metabolism in contrast to group II (antegrade perfusion) and III (retrograde perfusion) which displayed negative lactate balance. Oxygen consumption was greater in group III than II (p less than 0.01) with a higher oxygen extraction in III (p less than 0.005). Group IV, which was given intravenously 30 mg/kg methylprednisolone prior to anoxia and then retroperfused, showed continued aerobic metabolism with low GDH venous levels and adequate oxygen consumption. Three dogs were then subjected to aortoatrial rim coronary sinus vein grafts with ligation of the left common coronary artery at its bifurcation with distal left circumflex and anterior descending artery-internal mammary vein anastomoses for venous drainage. The right coronary artery was left intact. Arterial inflow into the coronary sinus was associated with a left ventricular pressure of 70-80 mm Hg for up to 1.5 h while regular sinus rhythm was maintained. We conclude that retroperfusion of the coronary sinus represents a surgically feasible technique for providing oxygen delivery to the ischemic myocardium.  相似文献   

6.
Adenosine, produced from the decomposition of adenosine triphosphate, is believed to provide protective effects during ischemia. On the other hand, adenosine metabolites may serve as precursors for oxygen free radical formation. The time course of formation of adenosine and its purine metabolites was studied during retinal ischemia in rats. Concentrations of adenosine and its purine nucleoside metabolites inosine, hypoxanthine, and xanthine in the retina-choroid of ketamine/xylazine-anesthetized rats were measured during retinal ischemia using high performance liquid chromatography. Quantitative measurements were made possible in the small tissue mass through the use of internal standards. Ischemia was induced by ligation of the central retinal artery. In each rat, one eye was ischemic while the other served as a non-ischemic control. Eyes were frozen in situ at 1, 5, 10, 20, 30, 60, and 120 min of ischemia. The retina-choroid was then removed from the frozen eyes and analysed. Significant increases in the concentrations of adenosine, inosine, and hypoxanthine in ischemic compared to control retina-choroid were detectable within 1 to 5 min of the onset of ischemia, and within 10 min for xanthine. Increase in adenosine concentration in ischemic relative to control retina-choroid plateaued at 30 min of ischemia, while inosine and hypoxanthine concentrations increased continuously. The increase in xanthine concentration was exponential throughout the measurement period. This study documented the time-related changes in purine nucleoside concentration during ischemia. Prolonged ischemia results in ongoing production of xanthine, which by serving as a precursor for oxygen free radical formation, could be a pathogenic factor in prolonged retinal ischemia.  相似文献   

7.
Adenosine is a putative neuroprotectant in ischemia, but its role after traumatic brain injury (TBI) is not clear. Metabolites of adenosine, particularly inosine and hypoxanthine, are markers of ischemia and energy failure. Adenosine triphosphate (ATP) breakdown early after injury and metabolism of cyclic adenosine monophosphate (cAMP) are potential sources of adenosine. Further delineation of the magnitude, location, time course, and source of production of adenosine after TBI is needed. We measured adenosine, inosine, and hypoxanthine in brain interstitial fluid after controlled cortical impact (CCI) in the rat. Rats (n = 15) were prepared for TBI induced by CCI. A microdialysis probe was placed in the cortex, and samples were collected every 10 min. After 3 h of equilibration, the catheter was removed, CCI was performed (4 m/sec, depth 2.5 mm), and the catheter was replaced. In the shams, the catheter was removed and replaced without CCI. The injury group included rats (n = 10) subjected to CCI. Within the injury group, the microdialysis probe was placed in the center of the eventual contusion (center, n = 5) or in the penumbral region (penumbra, n = 5). Purine metabolites were measured using ultraviolet-based high-pressure liquid chromatography. Adenosine, inosine, and hypoxanthine were dramatically increased after injury (61-fold, 37-fold, and 16-fold, respectively sham, all p < 0.05, two-way analysis of variance for repeated measures). No changes in cAMP were observed (p = 0.62 vs. sham). Adenosine peaked in the first 20 min and returned to near baseline 40 min, whereas inosine and hypoxanthine peaked at 30 min and remained increased for 40 min after CCI. Interstitial brain adenosine, inosine, and hypoxanthine were increased early after CCI in rats in the contusion and penumbra. ATP breakdown is a potential source of adenosine in this early period while metabolism of cAMP does not appear to play a role. Confirmation of these data in humans may suggest new strategies targeting this important metabolic pathway.  相似文献   

8.
Hearts preconditioned by brief ischemia are characterized by a reduced rate of cellular purine metabolite production during subsequent prolonged ischemia; the purpose of this study was to determine if transient exogenous adenosine pretreatment can mimic this phenomenon. The accumulation of interstitial fluid (ISF) purine metabolites during prolonged ischemia in untreated anesthetized dogs (n = 7) was compared to that in a group pretreated with brief ischemia (ischemic preconditioned group; n = 9), a group pretreated with 1.5 micromoles/min intracoronary adenosine (n = 7), and a group pretreated with 100 micromoles/min intracoronary adenosine (n = 7). Ischemic preconditioning was achieved by a 5 min period of left anterior descending coronary artery (LAD) occlusion followed by 10 min of reperfusion. The adenosine-treated groups were subjected to 10 min of intracoronary adenosine followed by 10 min of recovery. All animals were exposed to 60 min LAD occlusion followed by 60 min reperfusion. The changes in ISF adenosine and adenosine metabolites were assessed by cardiac microdialysis, using dialysate concentrations as indices of ISF levels. Ischemic preconditioning decreased the rate of dialysate adenosine and total purine accumulation during the prolonged ischemia. Although the two doses of exogenous adenosine bracketed the increase in ISF adenosine seen with ischemic preconditioning, neither adenosine dose was able to attenuate the rate of purine metabolite accumulation during prolonged ischemia. We conclude that exogenous adenosine pretreatment is unable to mimic the reduced ischemia-induced purine efflux that is characteristic of myocytes pretreated with brief ischemia.  相似文献   

9.
The cardiovascular effects of KRN2391, N-cyano-N'-(2-nitroxyethyl)-3-pyridine carboximidamide monomethanesulfonate, were compared with those of cromakalim and nitroglycerin in anesthetized dogs. KRN2391 (3-30 micrograms/kg, i.v.), cromakalim (3-30 micrograms/kg, i.v.) and nitroglycerin (1-10 micrograms/kg, i.v.) produced a dose-related decrease of the mean blood pressure with concomitant increase in heart rate. The increase in heart rate caused by cromakalim was lower than that caused by KRN2391 and nitroglycerin. Left ventricular end-diastolic pressure was decreased by all doses of KRN2391 and nitroglycerin. Cromakalim at 3 and 10 micrograms/kg decreased this end-diastolic pressure but increased it at 30 micrograms/kg. Left ventricular dP/dt was increased by KRN2391 and nitroglycerin but was decreased by cromakalim. KRN2391 and cromakalim produced a dose-dependent increase in aortic and coronary blood flow. Nitroglycerin showed biphasic changes in aortic and coronary blood flow, i.e., an initial increase followed by a decrease. At equipotent hypotensive doses, the increase in coronary blood flow induced by KRN2391 was greater than that by cromakalim and nitroglycerin, and total peripheral and coronary vascular resistances were decreased by KRN2391 and cromakalim. Nitroglycerin showed biphasic changes in total peripheral and coronary vascular resistances, i.e., these resistance showed an initial decrease followed by an increase. The relative decrease of coronary vascular resistance compared to the total peripheral vascular resistance was greater for KRN2391 than for cromakalim and nitroglycerin. The changes in hemodynamic parameters caused by KRN2391 were inhibited by pretreatment with glibenclamide (5 mg/kg, i.v.). These results suggest that the hemodynamic profile of KRN2391 is closer to that of cromakalim than to that of nitroglycerin, but that the selectivity for the coronary vascular bed is higher for KRN2391 than for cromakalim. In addition, it is considered that, compared with KRN2391 and nitroglycerin, cromakalim has a low selectivity for the vasculature vs the myocardium.  相似文献   

10.
Repeated applications of elevated K+ (50 or 75 mM) in cerebral cortical cup superfusates was used to evoke an efflux of gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, adenosine, and inosine from the in vivo rat cerebral cortex. K+ (50 mM) significantly elevated GABA levels in cup superfusates but had little effect on the efflux of glutamate, aspartate, glycine, adenosine, or inosine. K+ (75 mM) significantly enhanced the efflux of GABA, aspartate, adenosine, and inosine and caused nonsignificant increases in glutamate and glycine efflux. The adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA), applied in cup superfusates at a concentration of 10(-10) M had no effect on either basal or K(+)-evoked release of any of the amino acids or purines measured. At 10(-6) M CPA significantly enhanced aspartate release, and depressed GABA efflux. The selective A2 adenosine receptor agonist 2-p(2-carboxyethyl) phenethylamino-5'-N-ethyl-carboxamidoadenosine (CGS 21680) (10(-8) M) was without effect on either basal, or K(+)-evoked, efflux of amino acids or purines. The enhancement of aspartate (an excitotoxic amino acid) efflux by higher concentrations of CPA is likely due to activation of adenosine A2b receptors. This observation may be of relevance when selecting adenosinergic agents to treat ischemic or traumatic brain injuries. Overall, the results suggest that effects of adenosine receptor agonists on K(+)-evoked efflux of transmitter amino acids from the in vivo rat cerebral cortex may not be comparable to those observed with in vitro preparations.  相似文献   

11.
In the rat kidney, exogenous adenosine-3'-5'-monophosphate (cAMP) is converted to adenosine via the metabolism of cAMP to adenosine-5'-monophosphate by phosphodiesterase and adenosine-5'-monophosphate to adenosine by 5'-nucleotidase. Our purpose was to investigate whether in the rat kidney adenosine is synthesized from endogenous cAMP via the same pathway. Rat kidneys were perfused with Tyrode's solution, and stabilized for 3 hr to minimize basal renal purine secretion. In control experiments (n = 6), the renal venous secretion rate of adenosine, inosine, hypoxanthine and Sigmapurines (adenosine + inosine + hypoxanthine) did not change over the two 10-min experimental periods. In contrast, the beta adrenoceptor agonist (+/-)-isoproterenol (1 and 10 microM added to the perfusate) caused a significant (1-factor analysis of variance with repeated measures; n = 31) increase in the renal venous secretion of adenosine (P <.0001), inosine (P <.0007), hypoxanthine (P <.0007) and Sigmapurines (P <.0001) as measured by high-performance liquid chromatography with ultraviolet detection. The Sigmapurines was the most discriminating index of isoproterenol-induced changes in purine release, and the renal venous secretion of Sigmapurines was significantly (2-factor analysis of variance with repeated measures) attenuated by inhibition of beta adrenoceptors with propranolol (.1 microM, n = 6; P <.05), phosphodiesterase with 3-isobutyl-1-methylxanthine (1 mM, n = 5; P <.002) and 5'-nucleotidase with alpha, beta-methyleneadenosine-5'-diphosphate (0.1 mM, n = 5; P <.03). Our data indicate that activation of beta adrenoceptors increases purine biosynthesis in the rat kidney via a mechanism that involves phosphodiesterase and 5'-nucleotidase. These results support the existence of an endogenous cAMP-adenosine pathway in the rat kidney.  相似文献   

12.
BACKGROUND: OG-VI is a solution composed of 30 mmol/l inosine, 30 mmol/l sodium 5'-guanylate, 30 mmol/l cytidine, 22.5 mmol/l uridine and 7.5 mmol/l thymidine; it limits myocardial stunning in dogs. We examined whether adenosine A1 receptors were involved in the mechanism of action of OG-VI. METHODS: Dogs anesthetized with pentobarbital were subjected to 20 min of left anterior descending coronary artery ligation followed by 30 min of reperfusion. Saline, OG-VI in several doses, adenosine or inosine was infused at 0.1 ml/kg/min, starting 30 min before the ischemia. In some experiments, 1 or 3 mg/kg 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, was injected intravenously 15 min before the start of the OG-VI infusion. The percentage myocardial segment shortening (%SS) was measured by sonomicrometry. The tissue concentration of ATP was measured in the 30-min-reperfused hearts. RESULTS: In the saline group, %SS that had been decreased by ischemia returned toward pre-ischemic values after reperfusion, although the metabolic recovery was incomplete, with a low concentration of ATP. The %SS was almost completely restored by 12 and 1.2 mumol/kg/min OG-VI, but 0.4 mumol/kg/min was less effective. Administration of adenosine or inosine did not modify the changes in %SS during ischemia/reperfusion. Pretreatment with DPCPX worsened the recovery of %SS during reperfusion after ischemia in both the saline and the OG-VI groups. Infusion of DPCPX (3 mg/kg) with saline caused the animals to die shortly after the onset of ischemia. However, the enhancement of %SS recovery during OG-VI reperfusion was observed in the presence of DPCPX. CONCLUSION: OG-VI improves the recovery of %SS during reperfusion after brief ischemia in a dose-dependent manner. This effect is not brought about by stimulation of adenosine A1 receptors.  相似文献   

13.
AMP degradation is studied in two models of the Langendorff-perfused rat heart which generate a large release of purines: the 2-deoxy-D-glucose (2DG)-perfused heart and the anoxic heart. In the 2DG model, mitochondrial energy generation is quasi-normal, despite a very low ATP concentration. Furthermore, inorganic phosphate (Pi) concentration is low, an important difference with anoxia where Pi is very high, up to 82 mM. Coronary release of purines is measured by high performance liquid chromatography, and myocardial metabolite content by 31P nuclear magnetic resonance spectroscopy. In the 2DG-perfused hearts with glucose or acetate, the purine release consists nearly exclusively of inosine [up to 130 nmol/(min x gww)] while adenosine is less than 1 nmol/(min x gww). A possible interpretation is that AMP degradation proceeds mainly through deamination to inosine monophosphate by AMP deaminase (the IMP pathway). In contrast, the purine release in anoxia (100% N2) contains comparable quantities of adenosine and inosine [respectively 30 and 20 nmol/(min x gww)], indicating that part of AMP is dephosphorylated directly to adenosine. Comparison with the 2DG model suggests that the release of adenosine in the anoxic heart is a result of inhibition of AMP deaminase by Pi.  相似文献   

14.
Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 +/- 61 pmol/min/10(7) cells), nucleoside phosphorylase (187 +/- 8 pmol/min/10(7) cells), and adenosine deaminase (233 +/- 32 pmol/min/10(7) cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.  相似文献   

15.
The purpose of this study was to develop a standardised maximal treadmill exercise test performed until fatigue in order to find reproducible markers for anaerobic metabolism, specifically adenine nucleotide degradation. Six Standardbred trotters performed an incremental maximal treadmill exercise test in 1 min steps (starting with 7 m/s) until they could no longer keep pace with the treadmill. The test was performed twice with at least one week between the tests. Heart rate was recorded and venous blood samples were obtained during the test and in the recovery period for determination of plasma lactate, hypoxanthine, xanthine and uric acid. Muscle biopsy samples (m. gluteus) were collected at rest, immediately post exercise, and after 15 min recovery and analysed for their concentrations of glycogen, creatine phosphate (CP), adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), inosine monophosphate (IMP) and muscle lactate (MLa). Significant decreases in glycogen, CP and ATP and significant increases in IMP and MLa were seen immediately post exercise. None of these metabolites had returned to resting levels after 15 min of recovery. A marked increase in plasma lactate (PLa) occurred during exercise and the peak concentration (mean value = 27.2 mmol/l) was reached within 5 min of recovery. Plasma uric acid concentration did not increase during exercise but rose markedly immediately post exercise, reaching the highest level (mean value = 121.5 micromol/l) at 20-30 min recovery. The duration of the maximal test was related to peak PLa and the uric acid concentration at 30 min of recovery. A correlation was also found between the ATP and IMP concentrations immediately post exercise and the plasma uric acid concentration at 30 min of recovery. The results show that this treadmill test triggered anaerobic metabolism and also that uric acid concentration post exercise seems to be a marker for the adenine nucleotide degradation that occurs during intense exercise. No significant differences were seen in metabolic response between the 2 test occasions.  相似文献   

16.
Previous estimates of catecholamine kinetics in human subjects have been based on the measurement of the catecholamine levels in forearm venous plasma. However, the use of forearm venous measurements may introduce considerable error, since venous catecholamine levels may primarily reflect metabolism in the organ drained rather than in the total body. In this study, arterial levels of epinephrine were found to significantly exceed forearm venous levels, both basally (mean +/- SEM, 71 +/- 13 vs. 50 +/- 7 pg/ml; n = 6; P less than 0.05) and during infusions of epinephrine [0.1 microgram/min (112 +/- 9 vs. 77 +/- 11 pg/ml; P less than 0.005) or 2 micrograms/min (862 +/- 71 vs. 437 +/- 66 pg/ml; P less than 0.001)]. During the 2 micrograms/min epinephrine infusion, arterial plasma norepinephrine rose from 191 +/- 37 to 386 +/- 78 pg/ml (P less than 0.001), while venous norepinephrine levels did not change significantly. Fractional extraction (arterial - venous + arterial X 100) of epinephrine across the forearm was 26 +/- 8% in the basal state and increased to 33 +/- 6% and further to 51 +/- 4% during the epinephrine infusions. The addition of propranolol (5 mg, iv, plus an 80 micrograms/min infusion) reduced fractional extraction from 51 +/- 4% to 35 +/- 5%. Whole body clearance of epinephrine, calculated from arterial measurements, was 33 +/- 3 ml/kg . min during the 0.1 microgram/min infusion and 35 +/- 3 ml/kg . min during the 2 micrograms/min epinephrine infusion, values 50% lower than the clearance rates calculated from venous measurements. Propranolol infusion resulted in a fall in whole body clearance to 20 +/- 2 ml/kg . min (P less than 0.001), suggesting that epinephrine clearance is partly dependent on a beta-adrenergic mechanism. Basal endogenous release rate (clearance X basal epinephrine level) was estimated to be approximately 0.18 microgram/min, a value much less than that reported in studies using venous measurements. We conclude that arterial rather than venous measurements should be used to estimate catecholamine kinetics in vivo.  相似文献   

17.
The effects of adenosine and sodium nitroprusside (SNP) on central hemodynamics and myocardial blood flow and metabolism were investigated postoperatively after elective coronary artery bypass (CABG) surgery in ten sedated and mechanically ventilated patients in the intensive care unit. During three consecutive 15-min periods, SNP (0.8 +/- 0.1 micrograms.kg-1 x min-1), adenosine (88.9 +/- 13.3 micrograms.kg-1 x min-1), and then again SNP (0.7 +/- 0.1 micrograms.kg-1 x min-1) were infused to control postoperative hypertension at a mean arterial pressure of approximately 80 mm Hg. Systemic and pulmonary hemodynamics and global (coronary sinus flow, CSF) as well as regional (great cardiac vein flow, GCVF) myocardial blood flow and metabolic variables were measured. During adenosine infusion, in comparison to SNP, heart rate was unchanged, stroke volume index and cardiac index increased (24% and 32%, respectively), and the systemic vascular resistance index decreased (-26%). Mean pulmonary arterial pressure (24%) as well as pulmonary capillary wedge pressure (27%) and central venous pressure (18%) were higher with adenosine compared to SNP. Adenosine also increased CSF and GCVF (108% and 103%, respectively) without altering the CSF/GCVF flow ratio compared to SNP. Furthermore, adenosine increased the coronary oxygen content (51%) and decreased the arterio-great cardiac vein oxygen content difference (-48%) without changing regional myocardial oxygen consumption, indicating a more pronounced hyperkinetic myocardial circulation compared to SNP. In addition, adenosine infusion decreased arterial PO2 (-11%) and increased the intrapulmonary shunt fraction (57%). The PR interval time of the electrocardiogram was prolonged (12%) and the ST segment was more depressed during adenosine infusion compared to SNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Post-ischemic reperfusion phenomena were studied in two methods of myocardial protection: crystalloid cardioplegia (St Thomas n(o) 2) and cold blood cardioplegia (Buckherg) during cardiopulmonary bypass for human myocardial revascularisation. Myocardial protection was assessed on the course of hemodynamic parameters, reperfusion arrhythmias and biochemical analysis of the coronary flow after cross-clamp removal: creatine phosphokinase (CPK-MB) and nucleotide adenine metabolites (adenosine, inosine, hypoxanthine, xanthine and uric acid). The study was performed in two groups of 14 patients. Hemodynamic conditions were similar in both groups during reperfusion in order to avoid different coronary flow. Under these conditions, myocardial protection by cold blood cardioplegia reduced reperfusion arrhythmias, and resulted in a loss of CPK-MB release. Furthermore, cold blood cardioplegia provided protection of myocardial energy metabolism by reducing the loss of metabolites, purine bases and oxypurine bases into the coronary sinus. Our results also show that hypoxanthine is probably the final product of ATP degradation in human myocardial tissue.  相似文献   

19.
OBJECTIVES: This study was performed to assess the importance of adenosine in mediating metabolic coronary vasodilation during atrial pacing stress in humans. BACKGROUND: Numerous animal studies have examined the role of adenosine in the regulation of coronary blood flow, with inconsistent results. METHODS: The effect of the adenosine antagonist aminophylline (6 mg/kg body weight intravenously) on coronary functional hyperemia during rapid atrial pacing was determined in 12 patients. The extent of inhibition of adenosine vasodilation was assessed using graded intracoronary adenosine infusions before and after aminophylline administration in seven patients. Coronary blood flow changes were measured with a 3F intracoronary Doppler catheter. RESULTS: After aminophylline administration, the increase in coronary flow velocity during adenosine infusions was reduced from 84 +/- 48% (mean +/- SD) to 21 +/- 31% above control values (p < 0.001) at 10 micrograms/min and from 130 +/- 39% to 59 +/- 51% above control values (p < 0.001) at 40 micrograms/min. During rapid atrial pacing under control conditions, coronary blood flow velocity increased by 26 +/- 16%. The flow increment during paced tachycardia after aminophylline (23 +/- 10%) was unchanged from the control value, despite substantial antagonism of adenosine coronary dilation by aminophylline. CONCLUSIONS: These data suggest that adenosine does not play an important role in the regulation of coronary blood flow in response to rapid atrial pacing in humans.  相似文献   

20.
Pentisomide, 2-(2-diisopropylaminoethyl)-4-methyl-2-(pyridyl)- pentanamide, is a novel antiarrhythmic agent structurally related to disopyramide. Using a glass bead arrhythmic model, the authors studied the antiarrhythmic effect of pentisomide in dogs by monitoring the plasma concentrations. When pentisomide was infused at 1 mg/kg/min for 20 min, the ventricular tachycardia was significantly reduced at 5 min after starting the infusion; the arrhythmias were reduced to less than 5% at the end of the 20 min infusion. The plasma-free concentration of pentisomide was about 3 micrograms/ml at 5 min; it increased to about 10 micrograms/ml at the end of 20 min infusion. With 0.3 mg/kg/min infusion, the arrhythmias were reduced to about 60% but were not significant at 20 min of infusion. The plasma-free concentration of pentisomide did not reach 3 micrograms/ml until 20 min of infusion. The 3 micrograms/ml plasma-free concentration for pentisomide seems to be a critical concentration in inducing a significant antiarrhythmic effect. Pentisomide dose-dependently inhibited ischaemia-reperfusion arrhythmia at doses of 30 microM and higher concentrations in vitro. In conclusion, pentisomide inhibits arrhythmias dependent with the plasma concentration or with the concentration of the external solution. The critical plasma-free concentration for inhibition of arrhythmias was 3 micrograms/ml (not equal to 10 microM) and the in vitro effect also had a similar concentration. Therefore, the in vivo and in vitro antiarrhythmic concentrations were well correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号