首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo biocompatibility of glass ionomer cements (GICs) was evaluated for use in orthopaedic surgery using a rat model and compared with conventional bone cement, Polymethyl methacrylate, PMMA. The unset GICs and PMMA were inserted into the marrow cavities of rat femora and retained in situ for various periods of time. The PMMA bone cement showed complete biocompatibility with no interference with reparative bone. The conventional GIC with smaller glass particles and lower powder/liquid ratio showed an initial minor toxic effect on rat bone tissue with later disturbance of adjacent bone formation. The conventional GIC with larger-size glass particles and higher powder/liquid ratio and resin-modified GIC showed more severe toxic effect on rat tissue with the resin-modified GIC affecting the rat bone tissue later. The causes of toxicity associated with the conventional GIC with larger glass particles and higher powder/liquid ration and the resin-modified GIC are thought to be related with the unreacted acid component of both materials and longer ongoing metallic ion release.  相似文献   

2.
Glass-ionomer cements (GIC) offer several advantages over the conventional acrylic-based bone cements. The formation of an adhesive bond with bone and metals, a low setting exotherm and no systemic or local toxicity are some of the advantages cited. This study examines the in vivo biological and biomechanical behavior of two polyalkenoate cements (LG26 and LG30) implanted for 6 wk into the submetaphyseal spongiosa of the rabbit femur. Cements were implanted as both set cement rods and unset cement dough. Implantation of set rods resulted in the formation of variably mineralized osteoid/woven bone at the bone–cement interface. Mechanical (push-out) testing revealed the strength of this bone–cement interface was of similar magnitude to control (PMMA-rod implanted) animals. The bone of LG cement-dough implanted animals exhibited demineralization of pre-existing bone local to the site of implantation, accumulation of aluminum both locally and at a distance from the site of implantation, and defective mineralization of newly formed osteoid. The histological picture following LG implantation was strikingly similar to human renal osteodystrophy, in which skeletal accumulation of aluminum is a noted feature. The development of a GIC with low/no aluminum release from the unset cement dough is a priority in the further development of these cements for possible orthopaedic applications. © 1998 Kluwer Academic Publishers  相似文献   

3.
The suitability of Glass Ionomer Cements (GICs) for use in orthopaedics is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of a GIC and its absence is likely to hinder cement formation. However, zinc oxide, a bacteriocide, can act both as a network modifying oxide and an intermediate oxide in a similar fashion to alumina and so ternary systems based on zinc silicates often have extensive regions of glass formation. The purpose of this research was to produce novel GICs based on calcium zinc silicate glasses and to evaluate their rheological, mechanical and biocompatible properties with the ultimate objective of developing a new range of cements for skeletal applications. The work reported shows that GICs based on two different glasses, A and B (0.05CaO ⋅ 0.53ZnO ⋅ 0.42SiO2 and 0.14CaO ⋅ 0.29ZnO ⋅ 0.57SiO2, respectively), exhibited handling properties and flexural strengths comparable to conventional GICs. Upon immersion in simulated body fluid of a GIC based on glass B, an amorphous calcium phosphate layer nucleated on the surface of the cement indicating that these cements are bioactive in nature.  相似文献   

4.
Polymethylmethacrylate (PMMA) bone cements present various problems with respect to biocompatibility and stability. In order to study the histological changes at the bone-cement interface following total hip replacement, a small animal model was created by implanting hip prostheses using two different bone cements (PMMA and glass-ionomer cement, GIC). Two problems with the use of GIC for fixation of the prosthesis became evident. One year following implantation, histomorphometric analysis of femurs containing the GIC demonstrated significantly higher amounts of osteoid at the bone-cement interface. This disturbance of mineralization is comparable with osteomalacia and probably due to leaching of aluminum ions. In addition the mechanical properties of GIC proved to be inadequate for the loads placed upon it in this hip replacement model.  相似文献   

5.
Asceptic loosening of cemented joint prostheses in many cases is related to the mechanical failure of the acrylic bone cement. Poly(methylmethacrylate) bone cements are widely used in orthopaedic surgery although there are well-known disadvantages. A lower modulus bone cement based on poly(ethylmethacrylate)–n-butylmethacrylate with a lower polymerization exotherm, and a low monomer extractibility, is a promising alternative. The effect of incorporating crosslinking agents in order to improve the mechanical performance of the PEMA bone cement is reported. Three different bifunctional dimethacrylate crosslinking agents with different chain lengths and degrees of flexibility were incorporated in the monomer phase, and cements formulated. The setting time was found to decrease in the presence of the cross-linking agents and the polymerization exotherm decreased in the presence of triethylene glycol dimethacrylate and polyethylene glycol dimethacrylate, n=400. Incorporation of triethylene glycol dimethacrylate showed an increase in the tensile strength and modulus with a decrease in the strain at maximum stress. However, polyethylene glycol dimethacrylate, n=400, did not improve the mechanical properties appreciably which may be attributed to the low crosslinking density and higher flexibility of the spacer group in the crosslinking agent.  相似文献   

6.
The aim of this paper is to compare the fluoride-releasing and mechanical properties of an experimental luting glass ionomer cement, which has a modified composition and a commercial luting cement. The experimental powder was obtained by sol–gel process and then, it was used to prepare the experimental cements. The properties of cement pastes, such as setting time and working time, microhardness and diametral tensile strength were determined. Fluoride release from GICs was evaluated at time intervals of 1, 7, 14, 21 and 28 days in deionized water. Atomic force microscopy (AFM) analyses showed that the surface of the experimental cements is more homogeneous than commercial GICs. The mechanical properties and the measure of liberation of fluoride of the two cements were influenced by ratio powder:liquid and chemical composition of the precursor powders. Experimental cements released less fluoride than commercial cements. However, this liberation was more constant during the analyzed period. Thus, the results obtained in this study indicated that the composition of the experimental powder modified by the niobium can lead the formation of the polysalt matrix with good mechanical properties. In other words, we can say that experimental powder offered considerable promise for exploitation in dental field.  相似文献   

7.
Glass ionomer cements (GICs) are composed of an acid degradable glass, polyacrylic acid and water. Sol–gel processing to prepare the glass phase has certain advantages, such as the ability to employ lower synthesis temperatures than melt quenching and glasses that are reported to have higher purity. A previous study reported the effects of glass synthesis route on GIC fabrication. However, in that study, the sol–gel derived glass exhibited a reduced concentration of cations. This study investigates increasing the cation content of a sol–gel derived glass, 12CaO·4SrO·36ZnO·48SiO2 (molar ratio) by heating before aging to reduce dissolution of cations. This glass was prepared by both sol–gel and melt-quenched routes. GICs were subsequently prepared using both glasses. The resultant cement based on the sol–gel derived glass had a shorter working time than the cement based on the melt-quenched one. Contrary to this, setting time was considerably longer for the cement based on the sol–gel derived glass than for the cement based on the melt-quenched one. The cements based on the sol–gel derived glass were stronger in both compression and biaxial flexure than the cements prepared from the melt-quenched glass. The differences in setting and mechanical properties were associated with both cation content in the glass phase and the different surface area of the resultant cements.  相似文献   

8.
Bone cement consisting of polymethylmethacrylate (PMMA) powder and methylmethacrylate (MMA) liquid is clinically used for fixation of implants such as artificial hip joints. However, it does not show bone-bonding ability, i.e., bioactivity. The lack of bioactivity would be one of factors which cause loosening between the cement and the implant. The present authors recently showed the potential of bioactive PMMA-based bone cement through modification with γ -methacryloxypropyltrimethoxysilane (MPS) and calcium acetate. In this study, the effects of the kinds of PMMA powder on setting time, apatite formation and compressive strength were investigated in a simulated body fluid (Kokubo solution). The cement modified with calcium acetate calcined at 220 C could set within 15 min when the PMMA powder had an average molecular weight of 100,000 or less. The addition of calcium acetate calcined at 120 C in the PMMA powder required a much longer period for setting. The modified cements formed an apatite layer after soaking in the Kokubo solution within 1 day for cement starting from PMMA powder with a molecular weight of 100,000 or less. Compressive strengths of the modified cements were more than 70 MPa for cements starting from 100,000 and 56,000 in molecular weight. After soaking in Kokubo solution for 7 days, the modified cement consisting of PMMA powder of 100,000 in molecular weight showed a smaller decrease in compressive strength than that consisting of 56,000 in molecular weight. These results indicate that bioactive PMMA cement can be produced with appropriate setting time and mechanical strength when PMMA powders with a suitable molecular weight are used. Such a type of design of bioactive PMMA bone cement leads to a novel development of bioactive material for bone substitutes.  相似文献   

9.
PEMA–based bone cement has previously been shown to possess many advantages over traditional PMMA cements. One of these is the option of adding up to 40 wt % HA without a decrease in static mechanical strength, thus providing the potential for enhanced bioactivity. Bone cement, in vivo, is subjected to an aqueous environment and therefore, it is important to understand the influence of this upon the mechanical integrity of experimental cements. In this current investigation the static and dynamic properties of PEMA cement, with and without 30 wt % untreated and silanated HA, were examined after periods of immersion in Ringers solution. A commercial PMMA cement was also tested in a similar manner. Relatively small changes in static mechanical properties were observed after 12 weeks storage for the PEMA cements, the largest change being for the PEMA cement reinforced with silanated HA. The PMMA cement exhibited the largest change in static strength with a decrease of 16.6%. In contrast to these results, the fatigue properties of the PEMA cements were found to decrease significantly after storage in Ringers solution, again with the largest changes to the PEMA cement reinforced with silanated HA. This effect was attributed to the reduction in efficiency of the silane coupling agent in the presence of water. The fatigue resistance of the PMMA cement was not reduced after immersion in a saline environment.  相似文献   

10.
Glass ionomer cement (GIC) has been successfully used in dental field for more than 40 years. Despite numerous advantages of GIC, low bond strength and slow setting rate limited conventional GICs for use only at low stress-bearing areas. To improve bond strength to tooth, two kinds of cyanoacrylates such as ethyl 2-cyanoacrylate (EC) and allyl 2-cyanoacrylate (AC) were added in a commercial GIC. Changes in setting time of cyanoacrylate-modified GICs (CMGICs) according to the concentration of cyanoacrylates and/or p-toluene sulfonic acid (TSA) was investigated using a rheometer. Shear bond strength to human dentin was measured. Biocompatibility was determined by the viability of fibroblasts. Optimal concentrations for EC and TSA were 5–10% of the GIC powder and 30% of the GIC liquid, respectively. EC-based CMGIC showed twofold increase of initial bond strength compared with conventional GIC. Also, AC-based CMGIC showed three times higher bond strength and similar biocompatibility compared with the GIC. Therefore, CMGIC materials can be widely applied in dental adhesive restoration field because they showed improved bond strength and proper setting time.  相似文献   

11.
Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO2–0.36 ZnO–0.12 CaO–0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T g). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M w, 80,800) and water to form a GIC and the working time (T w) and the setting time (T s) of the resultant cements were then determined. The cement based on the solgel glass had a longer T w (78 s) as compared to the cement based on the melt derived glass (19 s). T s was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (σc) and biaxial flexure (σf), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system.  相似文献   

12.
Two-solution bone cement consisting of poly (methyl methacrylate) (PMMA) brushes in methyl methacrylate has been developed as an alternative to the traditional two-solution (TSBC) and powder-liquid cements. It was hypothesized that the substitution of brushes, for the entire pre-polymer phase of the cement, would permit a decrease in solution viscosity at higher polymer fractions, and allow for physical entanglements with the cement matrix. Consequently, improved cement exothermal and mechanical properties could be expected with brush addition. PMMA brushes were grafted on the surface of cross-linked PMMA nanospheres following a multi-stage synthetic strategy. Brushes exhibiting optimal molecular weight for preparation of TSBC were used for characterization of cement viscosity, flexural and compressive mechanical properties, exothermal properties and residual monomer content. Interactions between grafts and free polymer formed during free radical polymerization of the cement were evaluated based on molecular weight measurements of the cement matrix and brushes. Brush-containing cements exhibited lower viscosity at significantly higher polymer fractions in comparison to TSBC. Cements with PMMA brushes had significantly lower polymerization temperatures and residual monomer content. Measurements of molecular weight revealed the existence of a dry brush regime when using the brush compositions selected in this study, which led to a reduction in the mechanical properties of some of the compositions tested. The optimal cement viscosity and maintenance of other important cement properties achieved with addition of PMMA brushes is expected to expand the use of the two-solution cements in a range of applications.  相似文献   

13.
Bioactive bone cements based on a paste-paste system for orthopaedic applications have been developed. They consist of hydroxyapatite (HA) filler particles in a methacrylate matrix comprising urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA). To improve the interface between inorganic filler and organic matrix the HA particles were subjected to two different surface treatment methods, using polyacrylic acid (PAA) and gamma-methacryloxypropyltrimethoxy silane (gammaMPS). The aim of the present study was to determine the influence of surface treatment on the mechanical properties, namely compressive strength (CS), diametral tensile strength (DTS) and three-point flexural strength (FS) of the cements and the effect of ageing in simulated body fluid (SBF). Comparing the mechanical properties of the two cements after fabrication, the gammaMPS-HA cement showed higher strength values for all tests conducted (CS = 185+/-19.6 MPa, DTS = 27+/-2.5 MPa, FS=50.2+/-4.9 MPa), whereas PAA-HA containing cement had strength values around 20% lower. However, poly(acrylic acid) surface treatment was found to be more effective in improving the interface, and PAA-HA cements maintained their mechanical properties after immersion in SBF whereas gammaMPS-HA cement showed a reduction in strength values post ageing. From the results of this study, it is concluded that PAA treatment of the HA filler is a viable alternative to silanation with gammaMPS which may provide increased durability in aqueous environments.  相似文献   

14.
Conventional polymethylmethacrylate (PMMA) cements and more recently Bisphenol-a-glycidyl dimethacrylate (BIS-GMA) composite cements are employed in procedures such as vertebroplasty. Unfortunately, such materials have inherent drawbacks including, a high curing exotherm, the incorporation of toxic components in their formulations, and critically, exhibit a modulus mismatch between cement and bone. The literature suggests that aluminium free, zinc based glass polyalkenoate cements (Zn-GPC) may be suitable alternative materials for consideration in such applications as vertebroplasty. This paper, examines one formulation of Zn-GPC and compares its strengths, modulus, and biocompatibility with three commercially available bone cements, Spineplex, Simplex P and Cortoss. The setting times indicate that the current formulation of Zn-GPC sets in a time unsuitable for clinical deployment. However during setting, the peak exotherm was recorded to be 33 degrees C, the lowest of all cements examined, and well below the threshold level for tissue necrosis to occur. The data obtained from mechanical testing shows the Zn-GPC has strengths of 63 MPa in compression and 30 MPa in biaxial flexure. Importantly these strengths remain stable with maturation; similar long term stability was exhibited by both Spineplex and Simplex P. Conversely, the strengths of Cortoss were observed to rapidly diminish with time, a cause for clinical concern. In addition to strengths, the modulus of each material was determined. Only the Zn-GPC exhibited a modulus similar to vertebral trabecular bone, with all commercial materials exhibiting excessively high moduli. Such data indicates that the use of Zn-GPC may reduce adjacent fractures. The final investigation used the well established simulated body fluid (SBF) method to examine the ability of each material to bond with bone. The results indicate that the Zn-GPC is capable of producing a bone like apatite layer at its surface within 24 h which increased in coverage and density up to 7 days. Conversely, Spineplex, and Simplex P exhibit no apatite layer formation, while Cortoss exhibits only minimal formation of an apatite layer after 7 days incubation in SBF. This paper shows that Zn-GPC, with optimised setting times, are suitable candidate materials for further development as bone cements.  相似文献   

15.
The mechanical properties of glass-ionomer cements (GICs) have been satisfactory for dental applications and have shown their potential in orthopedic surgery. Because the physiological environment in orthopedics is different from dentistry by unavoidable contamination with blood and other fluids such as normal saline used during an operation, the determination of GICs for orthopedic applications should be performed in an appropriate environment. The properties of a novel resin-modified GIC, S430, for orthopedic applications were evaluated in simulated orthopedic conditions by an early exposure to and long-term storage in normal saline. An early exposure to normal saline caused 20–60% reduction of its compressive and flexural properties, whereas long-term storage in normal saline showed slight changes of its mechanical properties. The effects were probably due to the disturbance of the cross-linking formation in the acid-base reaction and also the reduction of electrostatic interactions of the cross-linking polymeric chain of hydroxyethyl methacrylate (HEMA) in resin-modified GIC.  相似文献   

16.
Dental cements including the glass ionomer cement (GIC) have found widespread use in restoring tooth structures. In this study, a sol-gel derived glass (SG) with a bioactive composition (70SiO(2) . 25CaO . 5P(2)O(5)) was added to the commercial GIC (GC, Fuji I) to improve the bioactivity and tooth regeneration capability. The SG powders prepared with sizes in the range of a few micrometers were mixed with GIC at SG/GC ratios of 10 and 30 wt%. The setting time, diametral tensile strength, and in vitro bioactivity of the GC-SG cements were examined. The setting time of the GC-SG cements increased with increasing amount of SG. However, the addition of SG did not significantly alter the diametral tensile strength of the GC. GC-SG induced the precipitation of an apatite bone-mineral phase on the surface after immersion in a simulated body fluid (SBF), showing in vitro bone bioactivity. However, no mineral induction in SBF was observed in the commercial GIC after the immersion. The in vitro cell assay confirmed that the GC-SG samples produced higher cell viability than the GC sample with cell culturing for up to 7 days.  相似文献   

17.
Up to now magnesium phosphate cements are mainly being utilized in wastewater treatment due to their adsorptive properties. Recently they also have been shown to have a high potential as degradable biocements for application as replacement materials for bone defects. In comparison to degradable calcium phosphate cements they have the advantage of setting at neutral pH, which is favorable in biological environment. In this study two parameters of the cement composition, namely powder-to-liquid ratio (PLR) and citrate content, were varied in order to optimize the injectability properties of the cement paste and the mechanical properties of the reaction product. These properties were determined by means of testing setting time and temperature, paste viscosity, and injectability as well as phase composition and compressive strength of the set cements. Best results were obtained, when the cements were prepared with a PLR of 2.5 and a binder liquid consisting of an aqueous solution of 3 mol/l diammonium hydrogen phosphate and 0.5 mol/l diammonium citrate.  相似文献   

18.
A bone cement, poly(ethylmethacrylate)/n-butylmethacrylate (PEMA/nBMA) has been developed with lower exotherm and monomer leaching compared to the traditional poly(methylmethacrylate)/methylmethacrylate (PMMA/MMA) cement. This study compares the in vitro biological response to the cements using primary human osteoblast-like cells (HOB). Cell attachment was qualified by immunolocalization of vinculin and actin cytoskeleton, showing more organization on PEMA/nBMA compared to PMMA/MMA. Proliferation was assessed using tritiated thymidine incorporation, and phenotype expression determined by measuring alkaline phosphatase (ALP) activity. An increase in proliferation and ALP activity was observed on PEMA/nBMA compared to PMMA/MMA. The results confirm the biocompatability of PEMA/nBMA, and an enhanced cell attachment and expression of differentiated cell phenotype.  相似文献   

19.
A comparative study of the fracture behaviour of Kevlar 29 reinforced bone and dental cements is undertaken using both linear elastic and non-linear elastic fracture mechanics approaches. Results from both approaches reflect improved fracture toughness at very low fibre contents. Flexural modulus is not apparently improved in either system, and flexural strength is only improved in the bone cement system probably because of poor interfacial bonding and the presence of voids in the dental cement. In all cases, however, bone cement is seen to be superior to dental cement. This is interpreted in terms of smaller voids and better fibre distribution due to the lower viscosity of the bone cement material. When compared to carbon-polymethyl methacrylate (PMMA) cements, Kevlar 29 reinforced systems appear to be superior. More work is underway to optimize the properties of these systems with regard to structural parameters.  相似文献   

20.
OBJECTIVE: To investigate the effect of ultrasound (US) application, US staring time and US duration on the setting of glass ionomer cement (GIC) by using Attenuated Total Reflectance Fourier Transform Infrared (ATR/FTIR) spectrometer. METHODS: Two conventional GICs, Fuji IX Fast and Ketac Molar were studied. US application was started at 30 s or 40 s after mixing and was applied for times between 15 and 55 s on samples of two different thicknesses. The samples were analysed using ATR/FTIR. RESULTS: US accelerated the curing process in both cements, US needed to be applied for more than 15 s. Both Fuji IX and Ketac Molar showed increased setting on increasing the US application duration from 15 s to 55 s. Increased setting of the GICs was produced when US application started 40 s after mixing rather than 30 s after mixing. CONCLUSIONS: The significant findings of the study include that US application accelerated the setting processes, by accelerating the formation of the acid salts. The salt formation increased with increase time of US application. The effect of application of US to setting GICs is influenced by time of the start of application of the US. The effects appear to material specific, with Ketac Molar showing a greater effect than Fuji IX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号