首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blast-furnace sludge is generated during the production of pig iron and is disposed of in the environment in large surface landfills. We investigated blast-furnace sludge samples of an abandoned landfill in order to determine its chemical and mineralogical nature and to evaluate some environmental hazards that may arise from this industrial waste. The mineralogical inventory, which was quantified by Rietveld refinement of XRD analyses using the fundamental-parameter approach, revealed that blast-furnace sludge is dominated by X-ray amorphous substances (with a mean of 590 g kg(-1)) including coke and (hydr)oxides of Fe, Si, Al, Zn, and Pb. Calcite (CaCO3) (136 g kg(-1)), dolomite (Ca,Mg[CO3]2) (14 g kg(-1)), quartz (SiO2) (55 g kg(-1)), kaolinite (Al2[OH]4Si2O5) (40 g kg(-1)), graphite (C) (27 g kg(-1)), and chemically not specified layered double hydroxides (28 g kg(-1)) were identified in almost all samples. Iron is present as magnetite (Fe3O4) (34 g kg(-1)), hematite (Fe2O3) (38 g kg(-1)), wuestite (FeO) (20 g kg(-1)) and alpha-iron (Fe0) (6 g kg(-1)). Chemically, blast-furnace sludge is dominated by C (190 g kg(-1)) and Fe (158 g kg(-1)) reflecting the process of pig-iron production. On the basis of total contents, environmentally problematic metals (including As) are Zn (32.6 g kg(-1)), Pb (10.3 g kg(-1)), Cd (81 mg kg(-1)), and As (129 mg kg(-1)). As the forested landfill is used by residents for leisure activities, the exposure assessment by pathway oral uptake of blast-furnace sludge particles by humans has to be critically evaluated, particularly as significant proportions of metals are acid-soluble. However, under the prevailing slightly alkaline pH values of the sludge (pH 7.6-9.2), the solubility of the metals is very low as indicated by low pore water concentrations. Currently, groundwater monitoring should be focused mainly on F- since the F- concentrations in the pore water of blast-furnace sludge are at high level (2.65-24.1 mg of F- L(-1)).  相似文献   

2.
To develop regulations efficiently, federal agencies need to know the costs of implementing various regulatory alternatives. As the regulatory agency responsible for the safety of meat and poultry products, the U.S. Dept. of Agriculture's Food Safety and Inspection Service is interested in the costs borne by meat and poultry establishments. This study estimated the costs of developing, validating, and reassessing hazard analysis and critical control points (HACCP), sanitary standard operating procedures (SSOP), and sampling plans; food safety training for new employees; antimicrobial equipment and solutions; sanitizing equipment; third‐party audits; and microbial tests. Using results from an in‐person expert consultation, web searches, and contacts with vendors, we estimated capital equipment, labor, materials, and other costs associated with these investments. Results are presented by establishment size (small and large) and species (beef, pork, chicken, and turkey), when applicable. For example, the cost of developing food safety plans, such as HACCP, SSOP, and sampling plans, can range from approximately $6000 to $87000, depending on the type of plan and establishment size. Food safety training costs from approximately $120 to $2500 per employee, depending on the course and type of employee. The costs of third‐party audits range from approximately $13000 to $24000 per audit, and establishments are often subject to multiple audits per year. Knowing the cost of these investments will allow researchers and regulators to better assess the effects of food safety regulations and evaluate cost‐effective alternatives.  相似文献   

3.
Vehicle self-pollution occurs when a vehicle's emissions migrate to inside that vehicle's passenger compartment. This paper presents values fortwo new parameters: vehicle self-pollution intake fraction (iF(SP)), which is the total fraction of a vehicle's emissions inhaled by all people in the vehicle, and vehicle self-pollution individual intake fraction (iF1SP), which is the fraction of a vehicle's emissions inhaled by an individual in the vehicle. We use results from tracer-gas experiments in California's South Coast Air Basin (SoCAB) to quantify students' iF(SP) and iF1SP for school bus emissions. Six buses were studied during nine runs with windows open and seven runs with windows closed. Reported iF(SP) values (units: per million; min = 10, max = 94, mean = 27) indicate that the total mass of a bus' exhaust inhaled by students commuting on it is comparable in magnitude to the total mass of that bus' exhaust inhaled by all other people in the SoCAB. Reported iF1SP values (units: per million; min = 0.2, max = 2.4, mean = 0.7) indicate that average per capita inhalation of emissions from any single bus is 10(5)-10(6) times greater for a student on that school bus than for a typical resident in the SoCAB. Vehicle self-pollution rate varies with bus window position (open or closed) and bus manufacture year. Our results can be used to develop cost-effective strategies to reduce children's exposure to school bus emissions. Our results indicate, for example, that even if emission reductions were many times more expensive per gram emitted for school buses than for an average vehicle, it would still be less expensive per gram inhaled by a student to reduce emissions from school buses than from an average vehicle.  相似文献   

4.
Examination of historical data shows that 3.5 x 10(8) tonnes (t) of residential refuse was discarded in New York City (NYC) during the 20th century. Maximum and minimum rates of per capita mass discard of residential refuse during this time are reported in 1940 (940 kg per capita yr(-1)) and 1961, 1963 (320 kg per capita yr(-1)), respectively. Since 1980, per capita residential refuse discard rates have been steady and comparatively low (430 kg per capita yr(-1) +/- 2.5%). Fuel ash accounted for approximately 34% of residential refuse in NYC during the century. A decline of refuse bulk density (as collected) from approximately 500 to 200 kg m(-3) and an increase in refuse organic matter content from 20% to 80% (by mass) is reported between 1920 and 1990 and is due largely to mass fraction reductions forfuel ash and increases for paper and plastic. Approximately 4.9 x 10(8) t of refuse was disposed in NYC during the 20th century (including commercial and residential refuse), representing a total pool of about 8.0 x 10(7) t of organic carbon (as C) that has entered city landfills and incinerators.  相似文献   

5.
We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.  相似文献   

6.
The objectives were to compare capital costs of building and installation of 7 ventilation systems for adult lactating dairy cow housing and evaluate the energy use and operating cost between systems. A cost model comprising stochastic and parametric modules was created to estimate the number of fans operating each day based on temperature set points; annual profiles of daily maximum, minimum, and average temperatures; ramping functions to transition between seasons; and weather data from 7 locations in the United States. Costs were described as US$ per stall per year and operating costs as US$ (kW·h) per stall per year. Building costs amoritized over 10 yr ranged from $246 to $318, where a 16-row cross-ventilated design had the minimum cost and a hybrid design incorporating elements of tunnel and natural ventilation had the maximum cost. Lowering the summer temperature set point from 22.2 to 18.0°C to potentially improve heat abatement for high-producing cows increased cost by $10.10 (101.0 kW·h). On average, an exponential ramping function for transitioning between seasons cost $55.40 (554 kW·h) compared with $61.40 (614 kW·h) for a linear function. A tunnel barn ranged from $79.40 (794 kW·h) to $212.30 (2123 kW·h), and a natural design ranged from $32.60 (326 kW·h) to $81.80 (818 kW·h) in operating costs due to fan selection alone. Cross-ventilated barns benefitted from economies of scale and had similar operating costs as naturally ventilated barns in larger facilities. On average, mechanical systems cost twice as much to operate as natural systems, and operating costs in hotter US climates were approximately double those in milder climates. Selecting a fan with low energy efficiency can increase the operating cost of any ventilation system approximately 2-fold, making fan choice a critical design element.  相似文献   

7.
Polyfluoroalkyl compounds (PFCs) were determined in air around a wastewater treatment plant (WWTP) and two landfill sites using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers in summer 2009. The samples were analyzed for five PFC classes (i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides (FOSAs), sulfonamidoethanols (FOSEs), perfluoroalkyl sulfonic acids (PFSAs), and perfluoroalkyl carboxylic acids (PFCAs)) to investigate their concentration in air, composition and emissions to the atmosphere. ∑PFC concentrations in air were 3-15 times higher within the WWTP (2280-24?040 pg/m(3)) and 5-30 times higher at the landfill sites (2780-26?430 pg/m(3)) compared to the reference sites (597-1600 pg/m3). Variations in the PFC pattern were observed between the WWTP and landfill sites and even within the WWTP site. For example, FTOHs were the predominant PFC class in air for all WWTP and landfill sites, with 6:2 FTOH as the dominant compound at the WWTP (895-12?290 pg/m(3)) and 8:2 FTOH dominating at the landfill sites (1290-17?380 pg/m(3)). Furthermore, perfluorooctane sulfonic acid (PFOS) was dominant within the WWTP (43-171 pg/m(3)), followed by perfluorobutanoic acid (PFBA) (55-116 pg/m(3)), while PFBA was dominant at the landfill sites (101-102 pg/m(3)). It is also noteworthy that the PFCA concentrations decreased with increasing chain length and that the emissions for the even chain length PFCAs outweighed emissions for the odd chain length compounds. Furthermore, highly elevated PFC concentrations were found near the aeration tanks compared to the other tanks (i.e., primary and secondary clarifier) and likely associated with increased volatilization during aeration that may be further enhanced through aqueous aerosol-mediated transport. ∑PFC yearly emissions estimated using a simplified dispersion model were 2560 g/year for the WWTP, 99 g/year for landfill site 1, and 1000 g/year for landfill site 2. These results highlight the important role of WWTPs and landfills as emission sources of PFCs to the atmosphere.  相似文献   

8.
Contamination of food contact surfaces by microbes such as Salmonella is directly associated with substantial industry costs and severe foodborne disease outbreaks. Several approaches have been developed to control microbial attachment; one approach is the development of food contact materials incorporating antimicrobial compounds. In the present study, Salmonella enterica Enteritidis adhesion and biofilm formation on regular and triclosan-impregnated kitchen bench stones (silestones) were assessed, as was cellular viability within biofilms. Enumeration of adhered cells on granite, marble, stainless steel, and silestones revealed that all materials were prone to bacterial colonization (4 to 5 log CFU/cm(2)), and no significant effect of triclosan was found. Conversely, results concerning biofilm formation highlighted a possible bacteriostatic activity of triclosan; smaller amounts of Salmonella Enteritidis biofilms were formed on impregnated silestones, and significantly lower numbers of viable cells (1 × 10(5) to 1 × 10(6) CFU/cm(2)) were found in these biofilms than in those on the other materials (1 × 10(7) CFU/cm(2)). All surfaces tested failed to promote food safety, and careful utilization with appropriate sanitation of these surfaces is critical in food processing environments. Nevertheless, because of its bacteriostatic activity, triclosan incorporated into silestones confers some advantage for controlling microbial contamination.  相似文献   

9.
Azole fungicides: occurrence and fate in wastewater and surface waters   总被引:2,自引:0,他引:2  
The mode of action of azole compounds implies a potential to affect endocrine systems of different organisms and is reason for environmental concern. The occurrence and fate of nine agricultural azole fungicides, some of them also used as biocides, and four azole pharmaceuticals were studied in wastewater treatment plants (WWTPs) and lakes in Switzerland. Two pharmaceuticals (fluconazole, clotrimazole, 10-110 ng L(-1)) and two biocides (propiconazole, tebuconazole, 1-30 ng L(-1)) were consistently observed in WWTP influents. Loads determined in untreated and treated wastewater indicated thatfluconazole, propiconazole, and tebuconazole were largely unaffected by wastewater treatment, but clotrimazole was effectively eliminated (> 80%). Incubation studies with activated sludge showed no degradation for fluconazole and clotrimazole within 24 h, but strong sorption of clotrimazole to activated sludge. Slow degradation and some sorption were observed for tebuconazole and propiconazole (degradation half-lives, 2-3 d). In lakes, fluconazole, propiconazole, and tebuconazole were detected at low nanogram-per-liter levels. Concentrations of the pharmaceutical fluconazole correlated with the expected contamination by domestic wastewater, but not those of the biocides. Per capita loads of propiconazole and tebuconazole in lakes suggested additional inputs; for example, from agricultural use or urban runoff rainwater.  相似文献   

10.
A novel bioassaythat uses visual inspection of reproduction of the aquatic green macroalga Ulva has been developed for testing toxic chemicals. The method employs a technique to quantify percentage reproduction based on thallus color change during the progression of reproduction. The validity of visual inspection as a reliable method was supported by a high test score (80.4) from a test of the ability of 97 first year university students with no biology background to evaluate reproduction by visual observation after 30 min training. The sensitivity of the method was assessed using a reference toxicant (sodium dodecyl sulfate; SDS; EC50 = 7.1 mg x L(-1)), heavy metals Cu (0.063 mg x L(-1)), Cd (0.217 mg x L(-1, Pb (0.840 mg x L(-1)), Zn (0.966 mg x L(-1)), formalin (1.458 mg x L(-1)), diesel fuel (3.7 mL x L(-1)), and is shown to be similar or better than more established aquatic toxicity bioassays. Toxicity data obtained by the Ulva bioassay for elutriates of sludge collected from nine different locations were directly compared with the commercially available Microtox test. Ulva reproduction was significantly inhibited in all elutriates with the greatest and least toxic effects, estimated by toxicity units (TU) observed in elutriates from industrial waste (13.1 TU) and a filtration bed (4.8 TU), whereas values ranging from 1 to 4.5 TU were obtained from the Microtox test, confirming that the Ulva bioassay is more sensitive. Correlation analyses for EC50 data versus the concentrations of toxicants in the sludge indicated a significant relationship between toxicity and four heavy meals (Cd, Cu, Pb, Zn) for the Ulva bioassay but no such correlation was detected by the Microtox test. The new bioassay method is simple to use, easy to interpret, economical, and eco-relevant so would be a valuable addition to aquatic toxicity testing protocols for a wide range of toxicants. Moreover, since Ulva has a wide geographical distribution and species have similar reproductive processes, the test method has worldwide application.  相似文献   

11.
This study assesses the arsenic (As) accumulation in different varieties of rice grain, that people in rural Bengal mostly prefer for daily consumption, to estimate the potential risk of dietary As exposure through rice intake. The rice samples have been classified according to their average length (L) and L to breadth (B) ratio into four categories, such as short-bold (SB), medium-slender (MS), long-slender (LS), and extra-long slender (ELS). The brown colored rice samples fall into the SB, MS, or LS categories; while all Indian Basmati (white colored) are classified as ELS. The study indicates that the average accumulation of As in rice grain increases with a decrease of grain size (ELS: 0.04; LS: 0.10; MS: 0.16; and SB: 0.33 mg kg(-1)), however people living in the rural villages mostly prefer brown colored SB type of rice because of its lower cost. For the participants consuming SB type of brown rice, the total daily intake of inorganic As (TDI-iAs) in 29% of the cases exceeds the previous WHO recommended provisional tolerable daily intake value (2.1 μg day(-1) kg(-1) BW), and in more than 90% of cases, the As content in the drinking water equivalent to the inorganic As intake from rice consumption (C(W,eqv)) exceeds the WHO drinking water guideline of 10 μg L(-1). This study further demonstrates that participants in age groups 18-30 and 51-65 yrs are the most vulnerable to the potential health threat of dietary As exposure compared to participants of age group 31-50 yrs, because of higher amounts of brown rice consumption patterns and lower BMI.  相似文献   

12.
This research was initiated to characterize atmospheric deposition of reactive gaseous mercury (RGM), particulate mercury (HgP; <2.5 microm), and gaseous elemental mercury (Hg0) in the arid lands of south central New Mexico. Two methods were field-tested to estimate dry deposition of three mercury species. A manual speciation sampling train consisting of a KCl-coated denuder, 2.5 microm quartz fiber filters, and gold-coated quartz traps and an ion-exchange membrane (as a passive surrogate surface) were deployed concurrently over 24-h intervals for an entire year. The mean 24-h atmospheric concentration for RGM was 6.8 pg m(-3) with an estimated deposition of 0.10 ng m(-2) h(-1). The estimated deposition of mercury to the passive surrogate surface was much greater (4.0 ng m(-2) h(-1)) but demonstrated a diurnal pattern with elevated deposition from late afternoon to late evening (1400-2200; 8.0 ng m(-2) h(-1)) and lowest deposition during the night just prior to sunrise (2200-0600; 1.7 ng m(-2) h(-1)). The mean 24-h atmospheric concentrations for HgP and Hg0 were 1.52 pg m(-3) and 1.59 ng m(-3), respectively. Diurnal patterns were observed for RGM with atmospheric levels lowest during the night prior to sunrise (3.8 pg m(-3)) and greater during the afternoon and early evening (8.9 pg m(-3)). Discernible diurnal patterns were not observed for either HgP or Hg0. The total dry deposition of Hg was 5.9 microg m-2 year-' with the contribution from the three species as follows: RGM (0.88 microg m(-2) year(-1)), HgP (0.025 microg m(-2) year(-1)), and Hg0 (5.0 microg m(-2) year(-1)). The annual wet deposition for total mercury throughout the same collection duration was 4.2 microg m(-2) year (-1), resulting in an estimated total deposition of 10.1 microg m(-2) year(-1) for Hg. On one sampling date, enhanced HgP (12 pg m(-3)) was observed due to emissions from a wildfire approximately 250 km to the east.  相似文献   

13.
Little is known about the reproductive endocrinology of the male polar bear, Ursus maritimus, except that serum testosterone concentrations are high in April and May during the mating season and are low from August to November during the non-mating season. The objective of this study was to describe the relationship between seasonal changes in testicular size and serum concentrations of testosterone, LH and prolactin. Blood samples and testicular measurements were obtained from free-ranging male polar bears in Canada in April (n = 5) and May (n = 15) near Resolute Bay, Northwest Territories and near Churchill, Manitoba in July (n = 15) and October (n = 22). Testis size was greater in May (39.4 +/- 3.5 cm(2)) than in October (27.3 +/- 2.0 cm(2)) (P = 0.002). Serum testosterone concentrations were approximately three-fold higher in April (5.8 +/- 0.8 ng ml(-1)) than in May (1.7 +/- 0.5 ng ml(-1)), July (0.6 +/- 0.2 ng ml(-1)) and October (1.1 +/- 0.2 ng ml(-1)). Similarly, serum LH concentrations were high in April (0.14 +/- 0.04 ng ml(-1)) and low in May (0.09 +/- 0.01 ng ml(-1)), July (0.10 +/- 0.02 ng ml(-1)) and October (0.08 +/- 0.00 ng ml(-1)). Serum prolactin concentrations were high in April (1.9 +/- 0.3 ng ml(-1)), highest in May (2.5 +/- 0.2 ng ml(-1)), lower in July (1.3 +/- 0.1 ng ml(-1)) and lowest in October (0.8 +/- 0.07 ng ml(-1)). The present study demonstrates a positive relationship between testicular size and serum concentrations of LH, prolactin and testosterone in the male polar bear and confirms the previously reported seasonal changes in serum testosterone concentrations. Data from the present study provide important baseline and comparative endocrine information that can be used to aid captive breeding programmes in zoos and to further ecological-behavioural studies of polar bears.  相似文献   

14.
Ginseng extracts are available as ingredients for improving energy and vitality and can be used in functional foods and as flavouring ingredients. A survey was been performed to determine the content of pesticides and toxic metals in ginseng extracts. Forty-seven samples from 20 suppliers, including both Panax ginseng C. A. Meyer (Asian ginseng) and P. quinquefolius (American ginseng) species, were analysed for arsenic content and for the following metals: aluminium, molybdenum, chromium, copper, magnesium, zinc, cadmium, mercury and lead, while pesticide residues were analysed in 30 samples from 17 suppliers. The results showed that 24 samples (80%) contained pesticides above the detection limit and 13 samples (43%) did not comply with the maximum residue limits (MRL) for total quintozene, hexachlorobenzene, total hexachlorocyclohexane, lindane, total heptachlor, e-chlorpyrifos and folpet, imposed for botanical extracts. Total quintozene, hexachlorobenzene, total hexachlorocyclohexane and lindane were present in all contaminated samples and exceeded the MRL in eleven samples, with levels up to 55 and 30 times their respective MRL. Cadmium (<0.05-259 microg kg(-1)), mercury (<0.3-72 microg kg(-1)), lead (3-2710 microg kg(-1)) and arsenic (<0.3-918 microg kg(-1)) were present in most samples at concentrations lower than the MRL imposed for flavouring substances. Among the other elements, aluminium (0.3-1068 mg kg(-1)) was the most abundant.  相似文献   

15.
The cost of high pressure processing (HPP) and the environmental impact of pulsed electric fields (PEF), HPP and thermal pasteurization of orange juice were estimated in the US. The cost analysis was based on commercial processing conditions that were validated for a 2-month shelf-life of orange juice under refrigeration conditions. Total electricity consumption was estimated to be 38,100 and 1,000,000 k Wh/year for thermal and HPP processing, respectively. Total pasteurization cost of HPP was estimated to be 10.7 ¢/l for processing 16,500,000 l/year (3,000 l/h). Of this, capital costs accounted for 59 % (6.3 ¢/l), labor costs accounted for 37 % (4.0 ¢/l) and utility charges, mainly electricity, accounted for 4 % (0.4 ¢/l). The total HPP cost was 7-folds higher than that of conventional thermal processing (1.5 ¢/l). The equivalent CO2 emission was 90,000 kg for thermal processing and 700,000 and 773,000 kg for PEF and HPP, respectively. This corresponds to an increase between 7- and 8-folds in comparison to the thermal processing. Increasing the production output by 2- to 6-folds reduced the total production costs of nonthermal processing by 50–75 %. A deeper knowledge of the processing costs and environmental impact of nonthermal technologies will afford companies a better understanding of the benefits and limitations of these novel systems.  相似文献   

16.
This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k(O3)) and OH radicals (k(OH)) were determined in bench-scale experiments (in brackets apparent k(O3) at pH 7 and T = 20 degrees C): bezafibrate (590 +/- 50 M(-1) s(-1)), carbamazepine (approximately 3 x 10(5) M(-1) s(-1)), diazepam (0.75 +/- 0.15 M(-1) s(-1)), diclofenac (approximately 1 x 10(6) M(-1) s(-1)), 17alpha-ethinylestradiol (approximately 3 x 10(6) M(-1) s(-1)), ibuprofen (9.6 +/- 1.0 M(-1) s(-1)), iopromide (<0.8 M(-1) s(-1)), sulfamethoxazole (approximately 2.5 x 10(6) M(-1) s(-1)), and roxithromycin (approximately 7 x 10(4) M(-1) s(-1)). For five of the pharmaceuticals the apparent k(O3) at pH 7 was >5 x 10(4) M(-1) s(-1), indicating that these compounds are completely transformed during ozonation processes. Values for k(OH) ranged from 3.3 to 9.8 x 10(9) M(-1) s(-1). Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.  相似文献   

17.
The objective was to compare the costs of natural service (NS) and timed artificial insemination (TAI) as breeding programs for dairy cows. Both programs were directly compared in a field study from November 2006 to March 2008. Reproductive results in that study were similar and served as inputs for this study. A herd budget accounting for all costs and revenues was created. Net cost during the field study for the NS program was $100.49/cow per year and for the TAI program was $67.80/cow per year, unadjusted for differences in voluntary waiting period for first insemination (VWP) and pregnancy rates (PR). After inclusion of the differences in VWP and PR, the economic advantage of the TAI program was $9.73/cow per year. Costs per day a cow was eligible for insemination were estimated at $1.45 for the NS program and $1.06 for the TAI program. Sensitivity analysis revealed that if the marginal feed cost increased to $5/hundredweight (cwt; 1 cwt = 45.36 kg), the advantage of TAI increased to $48.32/cow per year. In addition, higher milk prices and greater genetic progress increased the advantage of TAI. When semen price increased from $6 to $22, the NS program had an economic advantage of $33.29/cow per year. If each NS bull was replaced by an additional cow, the advantage of the TAI program was $60.81/cow per year. Setting the PR for both programs at 18% and the VWP at 80 d resulted in an advantage of $37.87/cow per year for the TAI program. In conclusion, any advantage of TAI depended greatly on cost to feed bulls, semen price, and genetic merit of semen.  相似文献   

18.
Individual whole body homogenates of 4 year old lake trout (Salvelinus namaycush) samples collected in 2001 from each of the Great Lakes were extracted using a novel fluorophilicity cleanup step and analyzed for perfluoroalkyl compounds (PFCs). Standard addition and internal standardization were used for quantification. Results were reported (+/- SE) for perfluorinated carboxylates (PFCAs), perfluorinated sulfonates (PFSAs), and unsaturated fluorotelomer carboxylates (8:2 and 10:2 FTUCA). The lowest average concentration of sigmaPFC was found in samples from Lake Superior (13+/-1 ng g(-1)), while the highest average concentration was found in samples from Lake Erie (152+/-14 ng g(-1)). Samples from Lake Ontario (60+/-5 ng g(-1)) and Lake Huron (58 +/-10 ng g(-1)) showed similar average sigmaPFC concentrations, although the perfluorinated sulfonate/carboxylate ratios were different. The major perfluoroalkyl contaminant observed was perfluorooctane sulfonate (PFOS) with the highest concentration found in samples from Lake Erie (121+/-14 ng g(-1)), followed by samples from Lake Ontario (46+/-5 ng g(-1)), Lake Huron (39 +/-10 ng g(-1)), Lake Michigan (16+/-3 ng g(-1)), and Lake Superior (5+/-1 ng g(-1)). Perfluorodecane sulfonate (PFDS) was detected in 89% of the samples, with the highest concentration in Lake Erie samples (9.8+/-1.6 ng g(-1)), and lowest concentration in samples from Lake Superior (0.7 +/- 0.1 ng g(-1)). Statistically significant correlations were observed between PFOS and PFDS concentrations, and PFOS concentration and body weight, respectively. The PFCAs were detected in all samples, with the highest total average concentration in samples from Lake Erie (19 ng g(-1)), followed by samples from Lake Huron (16 ng g(-1)), Lake Ontario (10 ng g(-1)), Lake Michigan (9 ng g(-1)) and Lake Superior (7 ng g(-1)). The compounds with significant contributions to the sigmaPFCA concentrations were PFOA and C9-C13-PFCAs. The 8:2 FTUCA was detected at concentrations ranging between 0.1 and 0.2 ng g-1, with the highest level in samples showing also elevated concentrations of PFOA (4.4 ng g(-1) for Lake Michigan vs 1.5 ng g(-1) for all other samples). The 10:2 FTUCA was detected only in 9% of all samples (nd, 45 pg g(-1)). For those PFCs where we determined lake water concentrations, the highest log BAFs were calculated for PFOS (4.1), PFDA (3.9), and PFOSA (3.8).  相似文献   

19.
《Journal of dairy science》1988,71(12):3463-3469
Dynamic programming was used to make optimum insemination and culling decisions. Revenue depended on the sale of milk, calves, and cull cows. Costs were based on feed costs, health costs, replacement costs, housing costs, and interest. Conception probabilities, genetic improvement, variation in production, and repeatability of production and involuntary culling probabilities were considered when making the optimum decisions. Annualized net revenue, optimum culling rates, and the optimum average productive life were determined for various involuntary culling rates. Results indicated that involuntary culling probabilities have a large impact on annualized net revenue. Reducing involuntary culling rates by 2.9% (marginal involuntary culling rates by 20%) resulted in about $22 more net revenue per cow per year. Increasing average mature equivalent milk yield by 122 kg resulted in the same increase in net revenue. Value of lowering the overall rate of involuntary culling was not affected by assuming that higher yielding cows were more prone to culling for involuntary reasons; however, optimum voluntary culling patterns were altered. Less intense culling in young cows was optimum when compared with the situation where the probability of involuntary culling was independent of production. Management and breeding policies should be directed toward increasing milk yield and decreasing the causes of involuntary culling.  相似文献   

20.
High levels of dissolved organic carbon (DOC) and bromide (Br) in the Sacramento and San Joaquin River waterways are of concern because DOC and Br are organic and inorganic precursors, respectively, of carcinogenic and mutagenic disinfection byproducts (DBPs). The Sacramento and San Joaquin Rivers are the two major rivers supplying water to the San Francisco Bay Delta, but sources and loads of DBP precursors into the Delta are still uncertain. The major objectives of this study were to evaluate both the quantity (DOC and Br fluxes) and the quality (reactivity in forming DBPs) of DBP precursors from the Sacramento and San Joaquin watersheds. Water samples were collected every 2 weeks at up to 35 locations along the Sacramento and San Joaquin Rivers and selected tributaries and analyzed for DOC (4 years), Br (1 year), and ultraviolet absorbance at 254 nm (1 year). Selected water samples were also tested for THM formation potential. Estimated fluxes for the Sacramento River were 39 000 +/- 12 000 Mg DOC year(-1) and 59 Mg of Br year(-1) as compared to 9000 +/- 5000 Mg of DOC year(-1) and 1302 Mg of Br year(-1) for the San Joaquin River. The THM formation potential was higher in the San Joaquin River (441 +/- 49 microg L(-1)) than the Sacramento River (176 +/- 20 microg L(-1)) because of higher concentrations of both organic (DOC = 3.62 +/- 0.14 vs 1.92 +/- 0.09 mg L(-1)) and inorganic DBP (Br = 0.80 +/- 0.07 vs < 0.03 +/- 0.01 mg L(-1)) precursors. The Sacramento River's greater DOC load despite lower DOC concentrations is due to its discharge being about 5 times greater than the San Joaquin River (50 x 10(9) vs 10 x 10(9) L day(-1)). The DOC concentration was significantly correlated with several land-cover types, including agriculture; however, no relationship was found between DOC quality and land-cover at the watershed scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号