首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of unknown compounds based on GC/EI-MS spectrum and structure generation techniques has been improved by combining a number of strategies into a programmed sequence. The program MOLGEN-MS is used to determine the molecular formula and incorporate substructural information to generate all structures matching the mass spectral information. Mass spectral fragments are then predicted for each structure and compared with the experimental spectrum using a match value. Additional data are then calculated automatically for each candidate to allow exclusion of candidates that did not match other analytical information. The effectiveness of these "exclusion criteria", as well as the programming sequence, was tested using a case study of 29 isomers of formula C(12)H(10)O(2). The default classifier precision resulted in the generation of too many structures in some cases, which was improved by up to several orders of magnitude by including additional classifiers or restrictions. Combining this with the exclusion of candidates based on a Lee retention index/boiling point correlation, octanol-water partitioning coefficients, steric energies, and finally spectral match values limited the number of candidate structures further from over 1 billion without any restrictions down to less than 6 structures in 10 cases and below 35 in all but 3 cases. This method can be used in the absence of matching database spectra and brings unknown identification based on MS interpretation and structure generation techniques a step closer to practical reality.  相似文献   

2.
An automatic unit for the screening of rainwater is used for the determination of organolead compounds using different detectors coupled to a gas chromatograph. A systematic overview is given of the advantages and disadvantages of several detectors (electron ionization mass spectrometry, EI-MS; microwave induced plasma atomic emission spectrometry, MIP-AES; and inductively coupled plasma time-of-flight mass spectrometry, ICP-TOFMS, for the speciation of organolead compounds on the basis of sensitivity, selectivity and reliability. C60 fullerene and RP-C18 were used as sorbent materials for these compounds. The primary assets of the fullerene sorbent, as compared to C18 sorbent, are high sensitivity and selectivity resulting from efficient adsorption due to large surface area and interstitial volume. Among the detection systems, GC/ ICP-TOFMS is the most sensitive, with absolute detection limits of approximately 15 fg of organolead compounds (as lead) using 5-mL sample volumes. Except for diethyllead, similar sensitivities were obtained by MIP-AES. GC/MS is intrinsically the most specific option, because the species are detected directly from molecular information. The precision is similar for all detectors. The screening of rainwater from different locations showed that samples collected in countries in which leaded gasolines are now banned contain organolead species at concentrations below 2 pg/ mL, levels that can be detected only for sample volumes of 25 mL and using MIP-AES or ICP-TOFMS as detectors, their determination being impossible by GC/MS.  相似文献   

3.
Nontarget analysis and identification of unknown polyhalogenated compounds is important in acquiring a thorough picture of the present pollution status as well as for identifying emerging environmental problems. Such analyses usually require the application of electron ionization mass spectrometry because the resulting mass spectra frequently allow for compound identification. When quadrupoles are used as mass separators, the full scan technique often suffers from low sensitivity along with nonspecificity for polyhalogenated trace compounds which often result in interference by matrix compounds. We have developed a novel nontarget gas chromatography/electron ionization-mass spectrometry-selected ion monitoring (GC/EI-MS-SIM) method that overcomes these sensitivity and selectivity issues. Our method is based on the fact that the molecular ions and isotope patterns of polyhalogenated compounds involve the most relevant primary information with regard to the structure of polyhalogenated compounds. Additionally, the retention times of polyhalogenated compounds generally increase with increasing molecular weight. The retention time range of polyhalogenated compounds was divided in three partly overlapping segments of 112 u (segment A: m/z 300-412; segment B: m/z 350-462; segment C: m/z 450-562) that were screened in eight GC runs consisting of 15 consecutive SIM ions. This method was tested with a passive water sampler extract known to contain over 30 polyhalogenated compounds according to the sensitive analysis by GC/electron capture negative ion (ECNI)-MS. While none of these polyhalogenated compounds could be detected by GC/EI-MS in full scan mode, our nontarget GC/EI-MS-SIM method allowed for the detection of 38 polyhalogenated compounds. Only seven could be identified by means of reference standards while more than 15 of the unknowns could be traced back to at least the class of compounds based on the mass spectrometric data from the nontarget SIM runs. All compounds identified originated from halogenated natural products. The nontarget GC/EI-MS-SIM method combines the high sensitivity obtainable with quadrupole systems for trace analysis with the structural information essential for the identification of unknown pollutants.  相似文献   

4.
Gas chromatography/mass spectroscopy is particularly useful as an analytical method for plastics failure analysis in cases where detection of an unknown contaminant or other compositional factor may be the cause or a contributor to failure. It takes advantage of the fact that GC is a method of separating compounds in a mixture, permitting their identification and possibly quantification. MS is not only a very sensitive detector but also gives mass spectra of GC peaks, permitting their identification in many cases. In thermal desorption GC/MS compounds are transferred from the sample to the GC with heat. Completely nonvolatile materials are not detected. Using desorption temperatures up to 300–350 °C, many components of plastics can be analyzed. In pyrolysis GC/MS the sample is decomposed at temperatures up to 900 °C; GC/MS analyzes the pyrolyzate. Examples are given of causes of plastics failures that have been determined by GC/MS.  相似文献   

5.
Unknown compounds in polar fractions of Arabidopsis thaliana crude leaf extracts were identified on the basis of calculations of elemental compositions obtained from gas chromatography/low-resolution quadrupole mass spectrometric data. Plant metabolites were methoximated and silylated prior to analysis. All known peaks were used as internal references to construct polynomial recalibration curves of from raw mass spectrometric data. Mass accuracies of 0.005 +/- 0.003 amu and isotope ratio errors of 0.5 +/- 0.3% (A + 1/A), respectively, 0.3 +/- 0.2% (A + 2/A), could be achieved. Both masses and isotope ratios were combined when the elemental compositions of unknown peaks were calculated. After calculation, compound identities were elucidated by searching metabolic databases, interpreting spectra, and, finally, by comparison with reference compounds. Sum formulas of more than 70 peaks were determined throughout single GC/MS chromatograms. Exact masses were confirmed by high-resolution mass spectrometric data. More than 15 uncommon plant metabolites were identified, some of which are novel in Arabidopsis, such as tartronate semialdehyde, citramalic acid, allothreonine, or glycolic amide.  相似文献   

6.
An LC-MS-NMR platform is demonstrated, which combines two innovations in microscale analysis, nanoSplitter LC-MS and microdroplet NMR, for the identification of unknown compounds found at low concentrations in complex sample matrixes as frequently encountered in metabolomics or natural products discovery. The nanoSplitter provides the high sensitivity of nanoelectrospray MS while allowing 98% of the HPLC effluent from a large-bore LC column to be collected and concentrated for NMR. Microdroplet NMR is a droplet microfluidic NMR loading method providing severalfold higher sample efficiency than conventional flow injection methods. Performing NMR offline from LC-UV-MS accommodates the disparity between MS and NMR in their sample mass and time requirements, as well as allowing NMR spectra to be requested retrospectively, after review of the LC-MS data. Interpretable 1D NMR spectra were obtained from analytes at the 200-ng level, in 1 h/well automated NMR data acquisitions. The system also showed excellent intra- and interdetector reproducibility with retention time RSD values less than 2% and sample recovery on the order of 93%. When applied to a cyanobacterial extract showing antibacterial activity, the platform recognized several previously known metabolites, down to the 1% level, in a single 30-mug injection, and prioritized one unknown for further study.  相似文献   

7.
Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS: size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.  相似文献   

8.
Shao X  Wang G  Wang S  Su Q 《Analytical chemistry》2004,76(17):5143-5148
An adaptive immune algorithm (AIA) was proposed for resolution of the overlapping GC/MS signal with background. By using AIA, the chromatographic profiles corresponding to the independent components (ICs) in the overlapping signal are calculated with the mass spectra extracted by means of independent component analysis (ICA). The number of the ICs in the overlapping signal is determined by the difference between the reconstructed and the original data. Both simulated and experimental data are investigated with the proposed AIA approach. It was found that the mass spectra and chromatographic profiles of the components in an overlapping multicomponent GC/MS signal can be accurately resolved with the existence of background, and the results are better than that by using an interactive self-modeling mixture analysis (SIMPLISMA) method. The AIA approach may be a promising tool for the resolution of overlapping GC/MS signal.  相似文献   

9.
Solid-phase microextraction (SPME) is a versatile new technique for collecting headspace volatiles prior to GC analysis. The commercial availability of uniform SPME fibers makes routine, practical quantitation of headspace concentrations possible, but straightforward information for relating GC peak areas from SPME analyses to headspace concentrations has not been available. The calibration factors (amount absorbed by the fiber divided by headspace concentration) were determined for 71 compounds using SPME fibers with a 100 μm poly(dimethylsiloxane) coating. The compounds ranged from 1 to 16 carbons in size and included a variety of functional groups. Calibration factors varied widely, being 7000 times higher for tetradecane than for acetaldehyde. Most compounds with a Kovats retention index of <1300 on a nonpolar GC column (DB-1) equilibrated with the fiber in 30 min or less. A regression model is presented for predicting the calibration factor from GC retention index, temperature, and analyte functional class. The calibration factor increased with retention index but decreased with increasing sampling temperature. For a given retention index, polar compounds such as amines and alcohols were absorbed by the fibers in greater amounts than were hydrocarbons. Henry's law constants determined using SPME were in general agreement with literature values, which supported the accuracy of the measured calibration factors. An unexpected concentration dependence of calibration factors was noted, especially for nitrogen-containing and hydroxy compounds; calibration factors were relatively higher (the SPME fiber was more sensitive) at the lower analyte concentrations.  相似文献   

10.
Price NP 《Analytical chemistry》2004,76(22):6566-6574
Metabolic profiling with stable-isotope tracers in combination with gas chromatography/mass spectrometry (GC/MS) is a well-established technique for measuring substrate redistribution within metabolic pathways. This analysis relies on the ability to localize and quantify the fractional incorporation of 13C isotope into each carbon atom of precursor-derived metabolites. In this paper, several carbohydrate derivatization procedures (peracetylation, deuterioalditol acetates, and aldononitrile acetates) are evaluated for the positional isotopic information obtained by gas chromatography/electron impact mass spectrometry (GC/EI-MS). These derivatives have been compared for the quantitative evaluation of 13C distribution into isotopomers of 13C-labeled aldoses and ketoses, and the fragmentation pathways for 15 hexoses, pentoses, and amino sugars of biological origin have been assessed. In addition, a new type of carbohydrate derivative (dialkyldithioacetal acetates) has been developed for GC/MS that retains the charge on the anomeric carbon of the original monosaccharide. Electron impact ionization of these derivatives generates well-resolved base peaks arising from C1-C2 bond cleavage with charge retention at the C1 thiol groups. The dialkyldithioacetal acetates are uniquely well suited for measuring isotopic enrichment into the characteristic anomeric carbon of aldose sugars and will facilitate the global analysis of metabolic flux in carbohydrate pathways.  相似文献   

11.
A prototype gas chromatograph (GC) electron monochromator (EM) reflectron time-of-flight (TOF) mass spectrometer has been constructed and demonstrated to simultaneously record four-dimensional resonant electron capture (REC) mass spectra (m/z, ion-intensity, electron-energy, and retention time) of electron-capturing compounds in real time. Specifically, complete REC mass spectra of all of the components in a mixture of perfluorocarboxylic acids and in a sample of pentafluorobenzyl alcohol were recorded in the GC mode. For each compound, the data enable one to distinguish different electronic states of the molecular ion and different possible decomposition pathways for each state. This new instrument can be used to obtain analytical information unrecognizable by any other mass spectrometric technique from the isomeric species of a variety of electron-capturing structures.  相似文献   

12.
For laboratories involved in polycyclic aromatic hydrocarbon (PAH) analyses in environmental samples, it is very useful to participate in interlaboratory comparison studies which provide a mechanism for comparing analytical methods. This is particularly important when PAH analyses are routinely done using a single technique. The results are reported for such an interlaboratory comparison study, in which the four selected participating laboratories quantitatively analyzed several PAH compounds in diesel exhaust samples. The samples included particle and vapor phase extracts collected and prepared at Michigan Technological University (MTU PE and MTU VE, respectively), a diesel particle extract prepared by the National Institute for Standards and Technology (NIST, SRM 1975), and a fully characterized diesel particle sample (NIST SRM 1650). One of the laboratories used only HPLC-FLD, one used only GC/MS and two laboratories used both methods for the routine analysis of PAH in environmental samples.Data were obtained for five PAH compounds: fluoranthene, pyrene, benz[a]anthracene, benzo[a]pyrene, and benzo[g, h,i]perylene. The mean PAH levels found for SRM 1650 were outside the range reported by NIST. The range in the reported means was from 24% lower than certified for benz[a]anthracene to 41% higher for benzo[g,h,i]perylene.For the previously uncharacterized samples in this study (SRM 1975, MTU PE and MTU VE), two-thirds of the reported results were higher for the HPLC-FLD method than for the GC/MS. The range in differences between methods was from-54 to+31% calculated as the difference in GC/MS value relative to the HPLC value for each of the compared compounds.Coefficients of variation for the uncharacterized samples appeared to be higher, in most (but not all) cases, for the HPLC-FLD than for the GC/MS. The resolution of certain PAH isomers (e.g. benz[a]anthracene and chrysene, or the benzofluoranthenes), was better, as expected, for HPLC than for GC. Generally lower detection limits (by an order of magnitude or more) were reported for GC/MS than for HPLC-FLD. On the basis of this limited study, it seems as though significant differences may exist between laboratories, if not between methods, in the analysis of certain PAH compounds in real diesel samples by HPLC-FLD compared to GC/MS. If possible, measurements should be made using both methods. This is particularly important where potential interferences are undefined or subject to change, as is frequently the case with real environmental samples.  相似文献   

13.
A method for measuring four tobacco-specific nitrosamines (TSNAs), an important group of compounds in tobacco products, was developed. These compounds were extracted using supercritical fluid extraction (SFE) and purified by a sodium hydroxide wash of the ethyl acetate eluting solvent and solid-phase extraction. Quantitation was performed using gas chromatography/mass spectrometry (GC/MS). Spiking experiments were carried out to determine the recovery, precision, and limits of detection of this method. The detection limits were 0.04 microgram per sample for N'-nitrosonornicotine and N'-nitrosoanatabine and 0.02 microgram for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosoanabasine. This method was used to measure TSNAs in various brands of cigarette tobacco with excellent reproducibility. The variation of TSNA levels among the cigarettes of different packs and types was significantly smaller than that among different brands. Comparable TSNA levels were obtained with SFE and liquid extraction methods. Signal-to-noise levels were similar for GC/MS and GC/thermal energy analysis when low-level tobacco samples were analyzed.  相似文献   

14.
Multistage mass spectrometry (MS(n)) generating so-called spectral trees is a powerful tool in the annotation and structural elucidation of metabolites and is increasingly used in the area of accurate mass LC/MS-based metabolomics to identify unknown, but biologically relevant, compounds. As a consequence, there is a growing need for computational tools specifically designed for the processing and interpretation of MS(n) data. Here, we present a novel approach to represent and calculate the similarity between high-resolution mass spectral fragmentation trees. This approach can be used to query multiple-stage mass spectra in MS spectral libraries. Additionally the method can be used to calculate structure-spectrum correlations and potentially deduce substructures from spectra of unknown compounds. The approach was tested using two different spectral libraries composed of either human or plant metabolites which currently contain 872 MS(n) spectra acquired from 549 metabolites using Orbitrap FTMS(n). For validation purposes, for 282 of these 549 metabolites, 765 additional replicate MS(n) spectra acquired with the same instrument were used. Both the dereplication and de novo identification functionalities of the comparison approach are discussed. This novel MS(n) spectral processing and comparison approach increases the probability to assign the correct identity to an experimentally obtained fragmentation tree. Ultimately, this tool may pave the way for constructing and populating large MS(n) spectral libraries that can be used for searching and matching experimental MS(n) spectra for annotation and structural elucidation of unknown metabolites detected in untargeted metabolomics studies.  相似文献   

15.
The hyphenation of gas chromatography and mass spectrometry (GC/MS) revolutionized organic analysis. In GC/MS coupling, usually electron impact ionization is applied, and molecules are identified by their fragment pattern. Although mass spectrometry in principle is a separation method, it is used predominantly as a spectrometric technique. However, if soft (i.e., fragmentation-free) ionization techniques are applied, the inherent separation character of MS is emphasized, which has similarities to a GC boiling point separation. By combining polar column GC separation and fast soft ionization time-of-flight mass spectrometry technology, a comprehensive separation of complex petrochemical samples can be obtained (GC x MS approach). Compounds of comparable physical-chemical properties are characteristically grouped together in a two-dimensional retention time-m/z representation. This resembles the separation characteristics of comprehensive two-dimensional gas chromatography (GC x GC) and, thus, represents a novel multidimensional separation approach. In this work, a gas chromatograph equipped with a polar separation column was coupled to a home-built laser ionization time-of-flight mass spectrometer. Laser-based, single-photon ionization was used for universal soft ionization and resonance-enhanced multiphoton ionization for selective ionization of aromatic compounds. A novel capillary-jet inlet system was used for the coupling. Multidimensional comprehensive analysis of complex petrochemical hydrocarbon samples using gas chromatography coupled to mass spectrometry with soft and selective photo ionization sources is first demonstrated.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are emitted into the atmosphere mostly by anthropogenic combustion sources. Because of their carcinogenic and mutagenic properties, PAHs are often analyzed in air quality measurements. Atmospheric concentrations of PAHs, typically in the nanograms-per-cubic-meter range, require significant effort for sample collection and processing when conventional methods such as gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/mass spectrometry are used. In contrast, two-step laser mass spectrometry (L2MS) is highly sensitive and selective for PAHs and requires almost no sample preparation. Here, we present for the first time a method based on L2MS to quantify PAHs adsorbed on aerosol particles collected on a filter. Linear ranges for quantitation were determined for five different PAHs in the mass range of 178-276 Da (i.e., phenanthrene, pyrene, chrysene, benzo[e]pyrene, benzo[ghi]perylene) covering more than 2 orders of magnitude with detection limits between 50 and 300 pg of a single PAH on a whole filter sample. A quantitative comparison with GC/MS was performed using model aerosols consisting of benzo[e]pyrene adsorbed on inorganic salt aerosol particles. On average, 25% less benzo[e]pyrene was determined with GC/MS than with L2MS, with a variability between the two methods of +/-68%. The general lower amount measured with GC/MS is attributed to losses during the sample preparation for the GC/MS measurements.  相似文献   

17.
Details of interfacing a high-pressure gas chromatograph to the internal ion source of a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) are described. We present our preliminary results and potential analytical applications of GC/FT-ICR for analyzing complex biological and environmental sample matrixes, such as petroleum mixtures. Based on GC/FT-ICR data, rapid characterization of various automobile gasoline samples is possible. Comparison between acquired data from the GC/FT-ICR MS (in broadband mode) and a commercial GC quadrupole mass spectrometer (QMS) (over a wide mass range) indicates that sensitivity of the GC/FT-ICR MS is an order of magnitude lower. High mass resolution and mass measurement accuracy of FT-ICR MS can be utilized for unambiguous molecular formula identification of unknown analytes.  相似文献   

18.
The photocatalytic degradation of triazophos in aqueous TiO2 suspension has been studied in a photoreactor operating with simulated solar radiation. The decrease in triazophos concentration followed first-order kinetics with a half-life of 4.76+/-0.42 h at a TiO2 suspension concentration of 10 mg/L. Seventeen degradation products were identified using HPLC-UV, HPLC/MS/MS, GC/MS/MS and IC, and by comparing retention times and spectra with commercially available authentic standards. On the basis of the observed transformation products, two routes were proposed, one based on the initial oxidative cleavage of PS bond to PO bond, and the other on initial cleavage of the ester P-O bonds. Photocatalysis holds promise for the solar treatment of pesticide-contaminated waters.  相似文献   

19.
Hefter J 《Analytical chemistry》2008,80(6):2161-2170
Extensively purified C37 alkenone references and mixtures thereof were analyzed by gas chromatography/flame ionization detection (GC/FID) and fast gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), to establish the latter as an alternative, fast, and reliable analysis method for alkenone unsaturation indices (U(k')(37)). This index is a tool for past sea surface temperature reconstructions with extensive use in paleoclimate and paleoceanographic research. TOF-MS was chosen because of its unique capability to acquire full-range spectra at high data rates (up to 500 spectra s(-1)) and to produce homogeneous spectra across a gaschromatographic peak, allowing faster separations than conventional GC/MS and the employment of enhanced peak deconvolution algorithms. Analysis time per sample could be reduced to run times of <10 min, i.e., by a factor of approximately 10 compared to conventional GC/FID (90-100 min) methods. However, %@mt;sys@%%@ital@%%@bold@%U%@reset@%%@rsf@%%@sx@%37%@be@%%@ital@%k%@rsf@%'%@sxx@%%@mx@% values from GC/TOF-MS showed deviations from those obtained by GC/FID, resulting from sensitivity differences between the C37:2 and C37:3 alkenone when analyzed by GC/TOF-MS. A solution to this bias is presented by determining compound-specific linear response factor equations to derive sensitivity ratios (SR) that allow conversion of GC/TOF-MS values into calibrated GC/FID data. Using alkenone mixtures of known composition and a variety of samples from natural environments, the applicability of this approach is demonstrated.  相似文献   

20.
The chromatographic and ionization properties of 35 polybrominated diphenyl ether (PBDE) congeners were investigated using GC/HRMS with metastable atom bombardment (MAB) and electron impact (EI) ionization. A multiple linear regression model based on bromine substitution patterns and MOPAC calculated physical properties was developed to predict relative GC retention times of individual PBDE congeners. Although five different sources of metastable rare gas atoms (He, N2, Ar, Xe, and Kr) were investigated with MAB ionization, only MAB-N2 provided adequate ionization efficiency and predictability. Because of reduced background noise to the MS detector, MAB-N2 had a lower limit of detection for tetra- and penta-BDEs than EI, despite having a lower sensitivity. Using MAB-N2, the molecular ion was always the base peak, with little fragmentation taking place. Conversely, using EI ionization, the [M - nBr]+ peak (where n = 1-4, depending on the number of Br substituents) was the dominant ion for all PBDE congeners. Multiple linear regression models representing the molecular ion response of PBDE congeners analyzed by GC/ HRMS with MAB-N2 and EI ionization were also developed using the number and type of Br substituents and ionization potentials. A significantly higher level of predictability was obtained for the MAB-N2 response model than for EI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号