首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Delamination cracking in advanced aluminum-lithium (Al-Li) alloys plays a dominant role in the fracture process. With the introduction of these materials into components of aerospace structures, a quantitative understanding of the interplay between delamination cracking and macroscopic fracture must be established as a precursor to reliable design and defect assessment. Delamination cracking represents a complex fracture mechanism with the formation of transverse cracks initially on the order of the grain size. In this work, interrupted fracture toughness tests of C(T) specimens, followed by incremental polishing, reveal the locations, sizes and shapes of delamination cracks and extensions of the primary macrocrack. These observations suggest that delamination crack sizes scale with loading of the primary crack front expressed in terms of J/σ0. Using a 3-D, small-scale yielding framework for Mode I loading, a companion finite element study quantifies the effects of prescribed delamination cracks on local loading along the macroscopic (primary) crack and ahead of the delamination cracks. An isotropic hardening model with an anisotropic yield surface describes the constitutive behavior for the 2099-T87 Al-Li alloy plate examined in this study. The computational results characterize the plastic zone size, the variation of local J ahead of the macrocrack front and the stress state that serves to drive growth of the macrocrack and delamination crack. The computational studies provide new, quantitative insights on the observed increase in toughness that has been observed during fracture experiments caused by delamination cracks that divide the primary crack front.  相似文献   

2.
Y. G. Wang  Z. X. Jiang  L. L. Wang 《Strain》2013,49(4):335-347
Experiments investigating dynamic tensile fracture were performed on the extruded rods of 2024‐T4 and 7075‐T6 aluminum alloys under varying loading conditions. The initial yield stress and fracture strain of 7075‐T6 alloy obtained in spilt Hopkinson tension bar tests are higher than that of 2024‐T4 alloy. But the initiation fracture toughness and spall strength of 2024‐T4 alloy are higher than those of 7075‐T6 alloy in three‐point bending and plate impact experiments, which indicates that 2024‐T4 alloy has better crack initiation tolerance and stronger spall failure resistance. Based on metallurgical investigations by using optical and scanning electron microscopes, it is revealed that the microstructure has a profound effect on the dynamic tensile fracture mechanism of each aluminum alloy. The 2024‐T4 alloy is relatively brittle due to voids or cracks nucleated at many coherent CuMgAl2 precipitate phases in the grain interiors, and the fracture mode is predominantly transgranular. The 7075‐T6 alloy exhibits relatively ductile fracture because voids or cracks growth is partly intergranular along the grain boundaries and partly transgranular by void formation around coarse intermetallic particles. The obvious differences of damage distribution and void coalescence mechanisms for 2024‐T4 and 7075‐T6 alloys under plate impact are also discussed.  相似文献   

3.
Indentation fracture of WC-Co cermets   总被引:22,自引:0,他引:22  
Indentation fracture of a series of well-characterized WC-Co cermets was studied with a Vickers diamond pyramid indenter. The resulting crack length-indentation load data were analysed in terms of relations characteristic of radial (Palmqvist) and fully developed radial/median (half-penny) crack geometries. The radial crack model gave a better fit to the data on all the alloys studied. Crack shapes determined by repeated surface polishing confirmed the radial nature of the cracks. An indentation fracture mechanics analysis based on the assumption of a wedge-loaded crack is shown to be consistent with the observed linear relation between the radial crack length and the indentation load. The analysis also predicts a simple relation among the fracture toughness (K lc), the Palmqvist toughness (W) and the hardness (H) of the WC-Co alloys.  相似文献   

4.
Fibre‐metal laminates (FMLs) are structural composites designed with the aim of producing very low fatigue crack‐propagation rate, damage‐tolerant and high‐strength materials, if compared to aeronautical Al alloys. Their application in aeronautical structures demands a deep knowledge of a wide set of mechanical properties and technological values, including both fracture toughness and residual strength. The residual strength of FMLs have been traditionally determined by using wide centre‐cracked tension panels M(T). The use of this geometry requires large quantities of material and heavy laboratory facilities. In this work, fracture toughness ( JC) of some unidirectional FMLs laminates was measured using a recently proposed methodology for critical fracture toughness evaluation on compact tension C(T) and single‐edge bend SE(B) specimens. Additionally, residual strength values of wider M(T) specimens with different widths (W from 150 to 200 mm) and several crack to width ratios (2a/W) were experimentally obtained. Some experimental residual strength values of M(T) specimens (W from 150 to 400 mm and different 2a/W ratios) of Arall were also obtained from the bibliography. Based on JC results from C(T) and SE(B) specimens, and either using or not using crack‐tip plasticity corrections, the residual strengths of the M(T) specimens were predicted and compared to the experimental ones. The results showed good agreement, especially when crack‐tip plasticity corrections were applied.  相似文献   

5.
Two titanium alloys TA6V and TD5AC were tested. Tensile tests were performed, under static and dynamic loadings, on cylindrical notched and fatigue precracked specimens. The visco-plastic constitutive equations of the alloy were found by fitting finite element computations with the experimental results. The dynamic fracture toughness was obtained by applying the convolution method of Bui and Maigre. Results for the TA6V alloy did not display significant variations of fracture toughness with loading rate, whereas for the TD5AC alloy an increase was measured. The critical void growth was found to be independent of the strain rate. Fair predictions of the fracture toughness under static as well as under dynamic conditions could be achieved by finite element computations using these experimental critical void growth values.  相似文献   

6.
An investigation has been made of the tensile properties, impact-, initial fracture toughness and fracture mode of an aluminium-lithium 8090 alloy at room temperature and 77 K, depending upon the heat treatment and orientation. The peak-aged material exhibited an excellent combination of strength and toughness, equal to or exceeding that shown by the high-strength aluminium alloys of the 2000 and 7000 series. The superior strength and toughness of peak-aged plates, including that of 3% stretched material, compared to underaged material seems to be associated with the lower content of coarse insoluble precipitates, a higher density of S-precipitates in a matrix ligament (grain) which promote ductile fracture. The impact toughness of the peak-aged specimens increased at 77 K only in the L-T plate orientation, while in the T-L orientation it was somewhat lower or remained the same. The toughness increase at 77 K is discussed in terms of the role of the matrix and (sub)grain-boundary precipitates, freezing of low-melting point impurities of sodium and potassium alkaline metals at (sub)grain boundaries and the occurrence of the fine crack divider delamination toughening. The yield strength, R o.2, increase on ageing was accompanied by a corresponding increase in initial crack divider fracture toughness, K lc, opposite to the trends obtained for some traditional high-strength aluminium alloys. Changes of K lc versus R o.2 depending on orientation are discussed using models for ductile fracture toughness behaviour of aluminium alloys, based on the criterion that a critical width of the heavily strained zone at the crack tip approximates the average ligament width, d p, i.e. the thickness of the elongated grain in the L-T and T-L plate orientations. It was also found that, for constant chemical composition and fabrication practice of the alloy, a critical plate thickness exists B 0.1 6 t i, where i is the initial thickness of the rolling ingot, for which the tensile strength properties in the L-T orientation are the same as that in the T-L orientation, while the plasticity (measured by elongation to failure) of the plate is a maximum. Two types of laminated cracks were observed on fracture surfaces of the specimens: large, >1 mm deep (the number of these cracks remains the same as the number of hot-rolling passes), and fine <0.4 mm (shallow laminated cracks, the number of which significantly increases with decreasing temperature, 77 K).  相似文献   

7.
Dynamic fracture toughness of a high strength armor steel   总被引:1,自引:0,他引:1  
This paper summarizes the results of a research being carried out to determine fracture behavior both in static and dynamic conditions of high strength armor steel Armox500T. In this research, notched specimens were cut to be tested in three-point bending test. Specimens were pre-cracked by flexural fatigue. Thereafter, some specimens were tested in bending up to rupture to determine the static fracture toughness KIC. To obtain fracture toughness in dynamic conditions, a split Hopkinson bar modified to perform three-point bending tests was used. In this device, displacements and velocities of the specimen were measured, as well as the rupture time by means of fracture detection sensors, glued to the specimens. After that, a numerical simulation of the test was performed by using LS DYNA hydrocode, obtaining stresses and strain histories around the crack tip. From these results, the stress intensity factor history was derived. By using the rupture time, measured by the sensors, the value of the fracture toughness computed was unrealistic. Therefore, the use of a numerical procedure to obtain the rupture time was decided, by comparing experimental results of velocities at the transmission bar with numerical results obtained with several rupture times. With this procedure, the computation of dynamic fracture toughness was possible. The method shows that the measurement of the dynamic fracture toughness is possible without the needs of using crack sensors or strain gauges. It can be observed that fracture toughness of this steel under static and dynamic conditions is quite similar.  相似文献   

8.
The crack propagation direction may affect weld metal fracture behavior. This fracture behavior has been investigated using two sets of single edge notched bend (SENB) specimens; one with a crack propagating in the welding direction (B×2B) and the other with a crack propagating from the top in the root direction (B×B) of a welded joint. Two different weld metals were used, one with low and one with high toughness values. For Weld Metal A, two specimen types have been used (B×B and B×2B) both with deep cracks. The weld metal A (with high toughness values) has reasonably uniform properties between weld root and cap. The resulting J-R curves show little effect of the specimen type, are ductile to the extent that the toughness exceeds the maximum Jmax, value allowed by validity limits and testing is in the large –scale yielding regime. In the case of weld metal B (with low toughness values) with two specimen types (B×B and B×2B) the B×B specimen has shallow cracks while the B×2B specimen has deep cracks. Both resulting J-R curves show unstable behavior despite the fact that the types of specimen and their constraints are different. The analysis has shown that crack propagation direction is most influential for a weldment with low toughness in the small scale yielding regime, whereas its influence diminishes due to ductile tearing during stable crack growth and large scale yielding. The results have shown that these effects are different in both the crack initiation phase and during stable crack growth, indicating a dependence on weld metal toughness and the microstructure of the weld metal. It can be concluded that, if resistance curves during stable crack growth do not show differences in both notch orientations, the fracture toughness values of the whole weld metal can be treated as uniform.  相似文献   

9.
In the present study, fatigue and fracture characteristics of sensitized marine grade Al‐Mg (AA 5754) alloy are experimentally evaluated. Received alloy is sensitized at temperatures of 150°C (SENS50) and 175°C (SENS75) for 100 hours. Fracture parameters, KIc and JIc, are experimentally evaluated. Slow strain rate tensile tests at a crosshead speed of 0.004, 0.006, and 0.01 mm/min; fatigue crack growth tests at load ratios (R = Pmin/Pmax) of 0.1, 0.2, and 0.5; and low cycle fatigue tests at four strain amplitudes of (0.3‐0.6)% are performed for SENS50 and SENS75 alloys. Relatively lower magnitude of fracture toughness values are observed for SENS75 specimen. Severe degradation in tensile properties, fatigue crack growth characteristics, and low cycle fatigue lives are observed for SENS75 samples. Extended finite element method is adopted to simulate the elasto‐plastic crack growth during fracture toughness evaluation. Scanning electron microscopy (SEM) is used to understand the failure mechanism of sensitized alloys.  相似文献   

10.
The current investigation pursues the confirmation of the applicability of the limit load solutions in determination of the η factors necessary for fracture toughness testing protocols. The procedure begins with the correct calculation of limit load values in welded single edge notch tension (SE(T)) fracture specimens containing centreline cracks. Hence, the η factor is inferred through the principle of potential energy. Additionally, such results are compared with those obtained from finite element analyses, including strain hardening effects available in the literature. SE(T) specimens subject to pin‐loading display that the η factors are insensitive to the configurational effects and hardening properties. On the other hand, in clamped SE(T) specimens, such effects become meaningful, making its usage in fracture toughness experiments questionable. This work provides an alternative methodology to compute fully plastic proportionality coefficients (η) based on limit load solutions for heterogeneous cracked SE(T) specimens. These analyses also consider the limitations and potentialities of such an approach in experimental measurements of ductile crack growth.  相似文献   

11.
The influences of microstructures and orientations on fracture toughness of intermetallic phase Al2Cu‐based alloys during different directionally solidified rates were investigated. With solidified rates increasing, the patterns of Al2Cu phase dendrite turned from faceted V‐shaped morphology to elongated plate‐shaped morphology and discontinuous complex morphology in longitudinal section. Moreover, the deviation angle between the growth direction of Al2Cu dendrite and the heat flow direction was increasing. Because of fine grain toughening and crack propagation path deflected by orientation, the fracture toughness of Al2Cu‐based alloy was improved. The experimental results showed that improving the brittleness could be well achieved under higher directionally solidified rate.  相似文献   

12.
Fracture and fatigue tests have been performed on micro‐sized specimens for microelectromechanical systems (MEMS) or micro system technology (MST) applications. Cantilever beam type specimens with dimensions of 10 × 12 × 50 μm3, approximately 1/1000th the size of ordinary‐sized specimens, were prepared from a Ni–P amorphous thin film by focused ion beam machining. Fatigue crack growth and fracture toughness tests were carried out in air at room temperature, using a mechanical testing machine developed for micro‐sized specimens. In fracture toughness tests, fatigue pre‐cracks were introduced ahead of the notches. Fatigue crack growth resistance curves were obtained from the measurement of striation spacing on the fatigue surface, with closure effects on the fatigue crack growth also being observed for micro‐sized specimens. Once fatigue crack growth occurs, the specimens fail within one thousand cycles. This indicates that the fatigue life of micro‐sized specimens is mainly dominated by a crack initiation process, also suggesting that even a micro‐sized surface flaw may be an initiation site for fatigue cracks which will shorten the fatigue life of micro‐sized specimens. As a result of fracture toughness tests, the values of plane strain fracture toughness, KIC, were not obtained because the criteria of plane strain were not satisfied by this specimen size. As the plane strain requirements are determined by the stress intensity, K, and by the yield stress of the material, it is difficult for micro‐sized specimens to satisfy these requirements. Plane‐stress‐ and plane‐strain‐dominated regions were clearly observed on the fracture surfaces and their sizes were consistent with those estimated by fracture mechanics calculations. This indicates that fracture mechanics is still valid for such micro‐sized specimens. The results obtained in this investigation should be considered when designing actual MEMS/MST devices.  相似文献   

13.
Microstructural aspects of the deformation and failure of AA 6061 and AA 2099 aluminum alloys under dynamic impact loading are investigated and compared with their responses to quasi-static mechanical loading in compression. Cylindrical specimens of the alloys, heat-treated to T4, T6 and T8 tempers, were subjected to dynamic compressive loading at strain rates of between 2800 and 9200 s−1 and quasi-static compressive loading at a strain rate of 0.0032 s−1. Plastic deformation under the dynamic impact loading is dominated by thermal softening leading to formation of adiabatic shear bands. Both deformed and transformed shear bands were observed in the two alloys. The shear bands offer preferential crack initiation site and crack propagation path in the alloys during impact loading leading to ductile shear fracture. While cracks propagate along the central region of transformed bands in AA 6061 alloy, the AA 2099 alloy failed by cracks that propagate preferentially along the boundary region between the transformed shear bands and the bulk material. Whereas the AA 2099 alloy shows the greatest propensity for adiabatic shear banding and failure in the T8 temper condition, AA 6061 alloy is most susceptible to formation of adiabatic shear bands and failure in the T4 temper. Deformation under quasi-static loading is dominated by strain hardening in the two alloys. Rate of strain hardening is higher for naturally aged AA 6061 than the artificially aged alloy, while the strain hardening rate for the AA 2099 alloy is independent of the temper condition. The AA 2099 alloy shows a superior mechanical behaviour under quasi-static compressive loading whereas the AA 6061 shows a higher resistance to impact damage.  相似文献   

14.
A new quantum action-based theory, dynamic quantized fracture mechanics (DQFM), is presented that modifies continuum-based dynamic fracture mechanics (DFM). The crack propagation is assumed as quantized in both space and time. The static limit case corresponds to quantized fracture mechanics (QFM), that we have recently developed to predict the strength of nanostructures. DQFM predicts the well-known forbidden strength and crack speed bands – observed in atomistic simulations – which are unexplained by continuum-based approaches. In contrast to DFM and linear elastic fracture mechanics (LEFM), that are shown to be limiting cases of DQFM and which can treat only large (with respect to the “fracture quantum”) and sharp cracks under moderate loading speed, DQFM has no restrictions on treating defect size and shape, or loading rate. Simple examples are discussed (i) strengths predicted by DQFM for static loads are compared with experimental and numerical results on carbon nanotubes containing nanoscale defects; (ii) the dynamic fracture initiation toughness predicted by DQFM is compared with experimental results on microsecond range impact failures of 2024-T3 aircraft aluminum alloy. Since LEFM has been successfully applied also at the geophysics size-scale, it is conceivable that DQFM theory can treat objects that span at least 15 orders of magnitude in size. International Conference on Fracture XI–Symposium 34, on Physics and Scaling in Fracture  相似文献   

15.
The fracture toughness at crack initiation were determined for bovine cortical bone under tension (mode I), shear (mode II), and tear (mode III). A total of 140 compact tension specimens, compact shear specimens and triple pantleg (TP) specimens were used to measure fracture toughness under tension, shear, and tear, respectively. Multiple-sample compliance method was utilized to measure the critical strain energy release rate (Gc) at the a/W=0.55 (crack length, a, to specimen width, W, ratio). The critical stress intensity factor (Kc) was also calculates from the critical loading (Pc) of the specimens at the a/W=0.55. The effect of the anisotropy of bone on its resistance to crack initiation under shear and tear loading was investigated as well. Fracture toughness of bone with precrack orientations parallel (designed as longitudinal fracture) and vertical (designed as transverse fracture) to the longitudinal axis of bone were compared. In longitudinal fracture, the critical strain energy release rate (Gc) of cortical bone under tension, shear, and tear was 644±102, 2430±836, and 1723±486 N/m, respectively. In transverse fracture, the critical strain energy release rate (Gc) of cortical bone under tension, shear, and tear was 1374±183, 4710±1284, and 4016±948 N/m, respectively. An unpaired t-test analysis demonstrated that the crack initiation fracture toughness of bone under shear and tear loading were significantly greater than that under tensile loading in both longitudinal and transverse fracture (P<0.0001 for all). Our results also suggest that cortical bone has been “designed” to prevent crack initiation in transverse fracture under tension, shear, and tear.  相似文献   

16.
This research studied the high strain-rate fracture behavior of a brittle metallic material under compressive loading. Gray cast iron was chosen as an ideal metal for such purpose. Split Hopkinson pressure bar test was used as experimental method for testing the specimens at the high strain-rate of 762–2526 S−1. Static compression test was performed at a slow rate of 2.4×10−4 S−1 for comparison purpose. The results indicated that the brittle metallic material does not clearly exhibit strain-rate sensitivity behavior, i.e. the difference between static and dynamic compression energy absorbed values tested at various strain-rates was insignificant. However, the fracture mechanisms were somewhat different. At slow rate, the fracture of gray iron was resulted from the crack propagating gradually and branching together along longitudinal directions of flake graphites. At high rate, it instantaneously appeared that large numbers of microvoids/cracks occurred and coalesced at the sites of flake graphites leading to the final fracture. Metallography and scanning electron microscopy (SEM) were performed to correlate the properties attained to the microstructural features.  相似文献   

17.
The crack arrest fracture toughness of two high strength steel alloys used in naval construction, HSLA-100, Composition 3 and HY-100, was characterized in this investigation. A greatly scaled-down version of the wide-plate crack arrest test was developed to characterize the crack arrest performance of these tough steel alloys in the upper region of the ductile-brittle transition. The specimen is a single edge-notched, 152 mm wide by 19 mm thick by 910 mm long plate subjected to a strong thermal gradient and a tensile loading. The thermal gradient is required to arrest the crack at temperatures high in the transition region, close to the expected service temperature for crack arrest applications in surface ships. Strain gages were placed along the crack path to obtain crack position and crack velocity data, and this data, along with the applied loading is combined in a “generation mode” analysis using finite element analysis to obtain a dynamic analysis of the crack arrest event. Detailed finite element analyses were conducted to understand the effect of various modeling assumptions on the results and to validate the methodology compared with more conventional crack arrest tests.Brittle cracks initiation, significant cleavage crack propagation and subsequent crack arrest was achieved in all 15 of the tests conducted in this investigation. A crack arrest master curve approach was used to characterize and compare the crack arrest fracture toughness. The HSLA-100, Comp. 3 steel alloy had superior performance to the HY-100 steel alloy. The crack arrest reference temperature was TKIA = −136 °C for the HSLA-100 plate and TKIA = −64 °C for the HY-100 plate.  相似文献   

18.
目的 研究影响铸造、锻造和粉末冶金TC4钛合金的损伤容限行为差异的主要因素。方法 分别从裂纹尖端塑性变形行为、二次裂纹及断口表面粗糙度3个方面对比,分析造成3种成形方法制备的TC4钛合金的断裂韧性和疲劳裂纹扩展速率差异的原因。结果 铸造TC4钛合金断裂韧性优于锻造和粉末冶金TC4钛合金,主要是因为新产生的裂纹面积大,消耗更多断裂能量。铸造TC4钛合金疲劳裂纹扩展速率低于锻造、粉末冶金TC4钛合金,其主要原因为曲折的裂纹路径和断面粗糙度诱发裂纹闭合效应以及长而深的二次裂纹。结论 3种成形方法制备TC4钛合金损伤容限行为差异的主要原因是断裂形成了不同裂纹路径形貌。  相似文献   

19.
Normalized Mode I stress intensity factors,N 1(a/R), for symmetrical radial cracks in diametral compression test specimens were experimentally evaluated using disc specimens of polymethyl methacrylate and the method of caustics. The method of caustics was first employed with precracked three-point bend specimens to assess the optical constant for the test material. This material property and the diameters of the caustics as a function of the applied load at different relative crack lengths (a/R) yielded the non-dimensional stress intensity factors using equations presented by Theocaris. These experimental values agreed closely with the theoretical solutions reported in the literature. Disc specimens of a polycrystalline alumina were also tested in diametral compression at temperatures up to 1000° C and the measured fracture toughness values were compared to those measured with chevron-notched bend specimens. It is shown that the centre-cracked diametral compression specimens give very reproducible fracture toughness measurements, and the specimen and the test technique can be usefully employed to assess the fracture toughness of structural ceramics at both ambient and elevated temperatures.  相似文献   

20.
目的 研究钨极氩弧焊(TIG)和搅拌摩擦焊(FSW)对2219铝合金(母材)力学及疲劳性能的影响。方法 通过拉伸试验,得到了母材、TIG和FSW接头的抗拉强度和伸长率;通过疲劳性能试验测试了母材、TIG和FSW接头在不同应力下相应的疲劳寿命,根据疲劳试验结果绘制了其试样的S-N曲线;使用扫描电子显微镜观察并分析了疲劳断口的形貌特征。结果 未焊接的铝合金母材抗拉强度和伸长率最高,分别为506 MPa和15.92%;TIG接头抗拉强度和伸长率分别为330 MPa和7.65%,FSW接头抗拉强度和伸长率分别为310 MPa和8.74%。母材、TIG和FSW接头等3种疲劳试样在2×106次循环下的疲劳强度分别为129、108、115 MPa,其疲劳断口均可分为裂纹源区、裂纹扩展区和瞬间断裂区,疲劳裂纹分别起始于试样表面的局部变形区、第二相夹杂物和“吻接”缺陷。疲劳裂纹扩展区的主要形貌为疲劳辉纹和二次裂纹,瞬间断裂区以脆性断裂为主。结论 TIG和FSW等2种焊接工艺均导致了2219铝合金的强度、塑韧性和疲劳性能降低,其接头表面的第二相夹杂物和“吻接”缺陷促进了疲劳裂纹的萌生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号