首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张铁  吴骄任  蔡蒂  吴凌峰 《机械传动》2021,45(11):34-40
为了实现四足机器人沿着管道内壁进行连续的周向运动,对运动过程中的位置和姿态进行规划.建立管道坐标系和机器人的位置、姿态方程,规划了一种包含足姿调整、机身旋转和机身平移的周向运动.为保证周向运动的连续性,对运动过程中位姿的角度、方向、位移进行规划,并通过足端运动实现周向运动位姿的规划.利用Matlab计算得到的周向运动关节角度曲线,对机器人样机进行爬壁实验.实验结果和滚转角分析验证了周向运动位姿规划的正确性.  相似文献   

2.
针对四足机器人在非结构化环境下的自适应稳定行走问题,提出一种面向未知复杂地形的四足机器人运动规划方法。采用爬行步态,基于零力矩点(Zero moment point, ZMP)稳定性判据进行在线轨迹规划。通过摆动腿的落地规划和感知策略估计未知地形的参数,实时调整各支撑腿的长度以控制机器人躯体的位置和姿态与当前地形相匹配,实现四足机器人对于未知地形高度和坡度变化的自适应。试验结果表明,四足机器人能够在满足稳定性的前提下,对未知复杂地形具有良好的适应能力,验证了该方法的有效性与可靠性。  相似文献   

3.
提出一种针对类人机器人复杂运动的状态转换规划方法。该方法采用状态空间描述机器人的动作序列,以ZMP稳定判据对运动中的状态节点进行稳定性分析,采用多项式插值的方法实现状态之间的转换,对不满足稳定性要求的插值轨迹采取增加状态节点重新修正的方法,从而完成类人机器人的运动规划。机器人的起立过程的仿真结果表明,该方法简单可行、有效。  相似文献   

4.
液压驱动六足机器人一种低冲击运动规划方法   总被引:3,自引:0,他引:3  
足地接触冲击对大尺度重载足式机器人的运动性能影响显著。针对液压驱动六足机器人,以低冲击平顺运动为目标,提出一种减小足地接触冲击的足端轨迹规划方法。基于仿生构型和运动学模型推导腿部关节的角度函数,根据液压缸铰点布置和腿部机构几何关系推导出各液压缸活塞杆的位置控制函数,分析表明关节和液压缸运动平稳,速度、加速度无突变。基于Vortex搭建机器人仿真平台,采用该方法实现了步行过程的仿真模拟,机体稳定前移过程中的垂向起伏微小,侧向偏移率约为2.1%。将该方法应用于开发的六足机器人原理样机,进行野外自然环境行走测试,各关节按预定轨迹平稳运动,足端受力合理。仿真结果与试验结果具有较好的一致性,验证了提出的运动规划方法合理可行。  相似文献   

5.
使用Adams对Pro/E造型的四足仿生机器人结构进行了仿真分析,为机器人控制器件,特别是驱动电机的选择以及步态的规划提供了重要的数据,并针对四足仿生机器人结构和控制性能的要求,以实现四足仿生机器人在复杂环境下稳定行走的运动策略为目的,设计了上下层分布控制系统.论述了控制系统方案及其控制机理,并详细介绍了机器人控制系统的硬件构成、软件体系及系统工作原理.  相似文献   

6.
使用Adams对Pro/E造型的四足仿生机器人结构进行了仿真分析,为机器人控制器件,特别是驱动电机的选择以及步态的规划提供了重要的数据,并针对四足仿生机器人结构和控制性能的要求,以实现四足仿生机器人在复杂环境下稳定行走的运动策略为目的,设计了上下层分布控制系统。论述了控制系统方案及其控制机理,并详细介绍了机器人控制系统的硬件构成、软件体系及系统工作原理。  相似文献   

7.
运用仿生学原理,在六足昆虫三角步态行走模式的基础上提出一种新的行走模式——四角步态模式,利用虚拟样机技术,构建出六足仿生机器人虚拟样机,并实现了六足仿生机器人的运动仿真。  相似文献   

8.
四足仿生机器人斜面行走的运动研究   总被引:1,自引:0,他引:1  
以岩羊为仿生对象,开发出一款适用于山地行走的四足机器人,重点研究其斜面运动。首先对三段式的腿部结构进行运动学建模,然后对机器人的斜面直线行走做出规划,最后进行仿真验证。仿真结果表明,机器人可以在斜面上保持连续平稳地运动;给出了一种通过控制身体俯仰角来实现斜面连续平稳运动的方法,为四足机器人实现山地环境的运动提供了参考。  相似文献   

9.
在了解国外主要研究成果的基础上,对四足机器人的关键技术进行了总结与分析。运动控制是四足机器人设计的关键技术之一,运动分析是为设计灵活稳定的物理样机及步态规划提供依据。在分析了仿生四足机器人实现运动要求的基本姿态的基础上,设计仿生四足机器人的机械结构;利用ADAMS建立了系统的考虑仿生四足机器人足部与地面接触的仿真模型,对其进行步态规划,仿真获得了四足机器人的动态特性;根据仿真结果,判断了步态规划的正确性及其影响,分析了摆动腿与地面冲击加速度过大的原因并提出了优化方案。  相似文献   

10.
为实现四足机器人稳定行走,分析了重心与稳定域的关系对机器人稳定步行的影响,研制了一种重心调整装置并应用于四足仿生机器人步行中。以静态步行为例,规划了机器人及其重心调整装置的运动方式,运用SolidWorks分别对机器人和重心调整装置进行了建模,并通过ADAMS对建立的模型进行了仿真分析。仿真结果表明该装置的应用能有效调节四足仿生机器人重心位置,实现了机器人的稳定步行。  相似文献   

11.
舵机驱动仿生四足机器人设计   总被引:1,自引:0,他引:1  
林德龙 《机械》2011,(2):66-69
四足机器人是模仿动物的运动机理,实现不同环境下的适应性行走.电机驱动相比液压或气压驱动,有能量传递方便,信号传递迅速,标准程度高的优点,成为机器人驱动的主流选择.针对四足机器人多自由度运动的特点,提出了一种舵机驱动控制机器人实现所规划的行走步态的有效方法.即采用模块化设计了舵机驱动四足机器人,其中包括控制系统软硬件的设...  相似文献   

12.
基于四足步行机器人模型对机器人的瞬时质心坐标进行了计算,得出了瞬时质心的运动规律,分析了各质量模块对机器人质心坐标的影响,对比了瞬时质心位移与几何中心位移的相对关系。给出了四足步行机器人静步态稳定性判定的公式,计算了基于瞬时质心的稳定裕度,并对稳定裕度进行了对比分析。  相似文献   

13.
在对典型哺乳动物机体结构分析基础上,提出一种液压驱动四足机器人的简化结构,完成机器人腿部结构的设计,并对腿部机构进行正逆运动学求解,研究不同负载因子下的直行起步调整到稳定行走步态并计算稳定裕度。结果表明:两种步态均能实现稳定的起步和周期行走,其中非连续调整步态的平均稳定裕度较大。  相似文献   

14.
Controlling the motions of the front and rear legs and regulating the compliance of the legs are important for stable gallop. In this paper, a new method called ellipse-based trajectory generation method (ETGM) to generate foot trajectories for galloping quadrupeds is proposed. Unlike many previous works which attempted controlling foot trajectory, which need a sophisticated algorithm to avoid forcing the feet out of the workspace and thus making galloping unstable, a new trajectory generation method is based on an elliptic trajectory with constant radii but with changes in its center position. The rotational speed of the elliptic trajectory or the orbit trajectory is determined by the desired height of galloping and the running speed. It is assumed that each leg of a galloping quadruped robot has passive ankle joints with passive springs, thus acting as a spring loaded inverted pendulum (SLIP). To check the performance and effectiveness of the proposed method, a series of computer simulations of a 2-D quadruped robot galloping in the sagittal plane were performed. The simulation results show that the proposed method is simple to implement and very effective in generating stable gallop. This paper was recommended for publication in revised form by Associate Editor Doo Yong Lee Jong Hyeon Park received his B.S. degree in mechanical engineering from Seoul National University in 1981 and his M.S. and Ph.D. degrees from the Massachusetts Institute of Technology in 1983 and 1991, respectively. Since 1992, he has been with the School of Mechanical Engineering at Hanyang University. He was a KOSEF-JSPS Visiting Researcher with Waseda University, Tokyo, Japan, in 1999, and a KOSEFCNR Visiting Researcher with Scuola Superiore Sant’Anna, Pisa, Italy in 2000, a Visiting scholar with MIT, Cambridge, USA, in 2002–2003. He was also associated with Brooks Automation Inc., Chelmsford, MA, in 1991–1992 and 2001–2002.  相似文献   

15.
为了实现液压作动的四足步行机器人的稳定行走,根据运动稳定裕量原则规划四足机器人的直行步态,保证三足支撑机体时稳定裕量为100 mm;针对液压缸运动加速度突变导致机体冲击振动的问题,提出了利用S型曲线作为各自由度的运动位移控制规律的方法。按照JQRI00型四足步行机器人原理样机的结构建立了虚拟样机模型,应用仿真软件对所设计步态进行了仿真,分析了步态的运动学、动力学特征和位移控制方法的运动特征;在四足步行机器人原理样机上进行了试验,并将试验与仿真结果进行了比较。研究结果表明,所设计的机器人步态可行,保证了机器人具有较好的行走稳定性;将S型曲线用于位移控制,消除了液压缸运动加速度的突变,进一步提高了机体运行的平稳性。  相似文献   

16.
四足步行机器人研究现状及展望   总被引:2,自引:0,他引:2  
文章对国内外四足步行机器人研究现状进行了综述,归纳分析了四足机器人研究的关键技术,井展望了四足机器人的发展趋势。  相似文献   

17.
为解决四足仿生机器人循迹问题,以Java语言中的Eclipse软件为编译环境,设计了改进的PID(proportion-integration-differentiation)循迹算法。与传统PID算法相比较,在对图像进行二值化处理的基础上,叠加了对机器人获取视野的首行末行、首列末列的双重检测,从而完善了对道路信息图像的识别与处理技术,使四足仿生机器人沿着既定轨迹精确前进。最后采用控制变量法进行多次实验,结果证明提出的算法是有效的,增强了机器人循迹的稳定性与鲁棒性。  相似文献   

18.
为降低四足机器人的工作能耗,提高其在恶劣环境下的有效工作时间,提出了一种小型化四足机器人的设计方案。首先,说明了该四足机器人的运动方式,详细介绍了其控制系统、减速传动机构、分解传动机构、间歇分配机构和腿部机构;然后,针对该小型化四足机器人的简化模型进行了运动学分析,将运用Pro/E软件建立好的小型化四足机器人模型导入ADAMS软件中,再基于ADAMS平台进行了三维四足机器人模型的运动仿真;最后,重点分析了该四足机器人双侧腿部进行步态切换时的行走状态,总结出了其速度曲线突变的原因。研究结果表明,该小型化四足机器人可以实现稳定的运动,进而验证了机器人设计方案的可靠性。  相似文献   

19.
Design and simulation for a hydraulic actuated quadruped robot   总被引:1,自引:0,他引:1  
This paper describes the mechanical configuration of a quadruped robot firstly. Each of the four legs consists of three rotary joints. All joints of the robot are actuated by linear hydraulic servo cylinders. Then it deduces the forward and inverse kinematic equations for four legs with D-H transformation matrices. Furthermore, it gives a composite foot trajectory composed of cubic curve and straight line, which greatly reduces the velocity and acceleration fluctuations of the torso along forward and vertical directions. Finally, dynamics cosimulation is given with MSC.ADAMS and MATLAB. The results of co-simulation provide important guidance to mechanism design and parameters preference for the linear hydraulic servo cylinders.  相似文献   

20.
This paper proposes an optimal galloping trajectory, which costs low energy and guarantees the stability of the quadruped robot. In the realization of fast galloping, the trajectory design is important. For a galloping trajectory, we propose an elliptic leg trajectory, which provides simplified locomotion to complex galloping motions of animals. However, the elliptic trajectory, as an imitation of animal galloping motion, does not guarantee stability and minimal energy consumption. We propose optimization based on energy and stability using a genetic algorithm, which provides a robust and globally optimized solution to this multi-body, highly nonlinear dynamic system. To evaluate and verify the effectiveness of the proposed trajectory, a series of computer simulations were carried out. This paper was recommended for publication in revised form by Associate Editor Doo Yong Lee Jong Hyeon Park received the B.S. degree in mechanical engineering from Seoul National University, Seoul, Korea, in 1981 and the S.M. and Ph.D. degrees from the Massachusetts Institute of Technology (MIT), Cambridge, in 1983 and 1991, respectively. Since 1992, he has been with the School of Mechanical Engineering at Hanyang University, Seoul, Korea, where he is currently a professor. He was a KOSEF (Korea Science and Engineering Foundation)-JSPS (Japan Society for the Promotion of Science) Visiting Researcher with Waseda University, Tokyo, Japan, in 1999, and a KOSEF-CNR (Consiglio Nazionale delle Ricerche) Visiting Researcher with Scuola Superiore Sant’Anna, Pisa, Italy, in 2000, a Visiting Scholar with MIT, Cambridge, USA, in 2002–2003. He was also associated with Brooks Automation Inc., Chelmsford, MA, in 1991–1992 and 2001–2002. His research interests include biped robots, robot dynamics and control, haptics, and bio-robots. He is a member of the IEEE (Institute of Electrical and Electronics Engineers), KSME (Korea Society of Mechanical Engineers), ICROS (Institute of Control, Robotics and Systems), KROS (Korea Robotics Society), KSAE (Korean Society of Automotive Engineers), KSPE (Korean Society of Precision Engineering) and KSEE (Korean Society for Engineering Education).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号