首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid-phase catalytic degradation of waste polyolefinic polymers (HDPE, LDPE, PP) over spent fluid catalytic cracking (FCC) catalyst was carried out at atmospheric pressure with a stirred semi-batch operation. The effect of experimental variables, such as catalyst amount, reaction temperature, plastic types and weight ratio of mixed plastic on the yield and accumulative amount distribution of liquid product for catalytic degradation was investigated. The initial rate of catalytic degradation of waste HDPE was linearly increased with catalyst amount (4-12 wt%), while that was exponentially increased with reaction temperature (350-430 ‡C). Spent FCC catalyst in the liquid-phase catalytic degradation of polymer was not deactivated fast. The product distribution from catalytic degradation using spent FCC catalyst strongly depended on the plastic type. The catalytic degradation of mixed plastic (HDPE: LDPE: PP: PS=3: 2: 3: 1) showed lower degradation temperature by about 20 ‡C than that of pure HDPE.  相似文献   

2.
Thermal and catalytic degradation using spent fluid catalytic cracking (FCC) catalyst of waste high-density polyethylene (HDPE) at 430 °C into fuel oil were carried out with a stirred semi-batch operation. The product yield and the recovery amount, molecular weight distribution and paraffin, olefin, naphthene and aromatic (PONA) distribution of liquid product by catalytic degradation using spent FCC catalyst were compared with those by thermal degradation. The catalytic degradation had lower degradation temperature, faster liquid product rate and more olefin products as well as shorter molecular weight distributions of gasoline range in the liquid product than thermal degradation. These results confirmed that the catalytic degradation using spent FCC catalyst could be a better alternative method to solve a major environmental problem of waste plastics. This paper is dedicated to Dr. Youn Yong Lee on the occasion of his retirement from Korea Institute of Science and Technology.  相似文献   

3.
Qian Zhou  Li Zheng 《Fuel》2004,83(13):1727-1732
A alumina-magnesium composite oxide catalyst (Al-Mg) was synthesized for catalytic degradation of poly vinyl chloride (PVC) containing polymer mixtures, i.e. polypropylene (PP)/PVC, low-density polyethylene (LDPE)/PVC, polystyrene (PS)/PVC, and LDPE/PP/PS/PVC. In the catalytic degradations the Al-Mg composite oxide catalyst accelerated the rate of polymer degradation and lowered the carbon distribution of liquid products. In addition, it showed good effect on the fixation of evolved HCl and greatly decreased the chlorine content in the oil. These results suggested that the Al-Mg composite oxide catalyst can be effectively used for catalytic degradation and dechlorination of PVC-containing mixed plastics.  相似文献   

4.
A mixture of post-consumer polyethylene/polypropylene/polystyrene (PE/PP/PS) with polyvinyl chloride (PVC) waste was pyrolyzed over cracking catalysts using a fluidizing reaction system operating isothermally at ambient pressure. The influences of catalyst types and reaction conditions including reaction temperatures, ratios of catalyst to plastic feed, flow rates of fluidizing gas and catalyst particle sizes were examined. Experiments carried out with various catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. A model based on kinetic and mechanistic considerations associated with chemical reactions and catalyst deactivation in the acid-catalyzed degradation of plastics has been developed. The model gives a good representation of experimental results from the degradation of commingled plastic waste. The results of this study are useful for determining the effects of catalyst types and reaction conditions on both the product distribution and selectivity from hospital plastic waste, and especially for the utilization of post-use commercial FCC catalysts for producing valuable hydrocarbons in a fluidizing cracking process.  相似文献   

5.
The catalytic degradation of polypropylene has been investigated in this study. Solid acid catalysts, such as silica-alumina and zeolites (HZSM-5, natural zeolite, Mordenite etc.), were screened for polypropylene degradation in the range of 350-450‡C. The degradation products of polypropylene, especially a liquid fraction, formed over solid acid catalysts, were analyzed by GC/MS. The degradation products are distributed in a narrow range of carbon number compared with those obtained by thermal degradation. The liquid fraction contained large amounts of iso-paraffins and aromatics as are present in the gasoline traction of petroleum. The natural zeolite catalyst (clinoptilolite structure, occurring in Youngil area of Korea) was an efficient catalyst for the polypropylene degradation. The acidity and characteristic pore structure of this zeolite appear to be responsible for the good performance. The effects of temperature and reaction tune on the product distribution have also been studied in this work.  相似文献   

6.
基于催化裂化催化剂降烯烃方面的研究进展,在现有催化裂化金属钝化剂的基础上,围绕提高氢转移活性,提出制备降烯烃催化裂化助剂的技术路线,并研制开发了新型降烯烃催化裂化助剂。实验结果显示,降烯烃助剂不仅具有良好的抗重金属污染的特性,而且能有效地降低汽油中的烯烃含量,其具有较高的氢转移活性,可协调芳构化与氢转移反应,同时也改善了催化裂化产品分布。  相似文献   

7.
Fluidized catalytic cracking (FCC) is an important link in heavy oil processing. Industrial FCC catalyst which mainly consists of molecular sieves, substrates and adhesives is used in large quantities every year. Spent FCC catalyst is one kind of hazardous solid waste that is hard to handle. In this paper, we used a spent FCC catalyst as a desulfurization adsorbent, and show that it displays advanced desulfurization property. Furthermore, regeneration experiment showed that calcination was an effective method to remove the sulfides adsorbed in spent FCC catalyst, after four cycles it still owned a high sulfur adsorption ability. The results of metal impregnation indicated that the high ability to remove sulfur in LPG was due to those metals deposited on WC. The sulfur removal further increased by calcination of the spent catalyst since carbon deposition on the catalyst surface which blocked the active sites was minimized by calcination, thus leading an increase in the number of active sites available.  相似文献   

8.
A commingled post-consumer polymer (CPW#1) was pyrolysed over spent fluid catalytic cracking (FCC) commercial catalyst (ECat-1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, ratios of commingled polymer to catalyst feed and flow rates of fluidising gas was examined. The conversion for spent FCC commercial catalyst (82.7 wt%) gave much higher yield than silicate (only 14.2 wt%) and the highest yield (nearly 87 wt%) was obtained for ZSM-5. Greater product selectivity was observed with ECat-1 as a recycled catalyst with about 56 wt% olefins products in the C3–C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that the use of spent FCC commercial catalyst and under appropriate reaction conditions can have the ability to control both the product yield and product distribution from polymer degradation, potentially leading to a cheaper process with more valuable products.  相似文献   

9.
Catalytic degradation of high-density polyethylene (HDPE) was carried out under nitrogen using a laboratory fluidised bed reactor operating at 360 °C with catalyst to polymer feed ratio of 2:1 and at 450 °C with catalyst to polymer feed ratio of 6:1 under atmospheric pressure. The catalysts used in this study were ZSM-5, US-Y, ASA, fresh FCC (fluid catalytic cracking) commercial catalyst (Cat-A) and equilibrium FCC catalysts with different levels of metal poisoning were studied. The initial results for polymer degradation at 360 °C (catalyst to polymer ratio of 2:1) in a fluidised bed reactor in terms of the yield of volatile hydrocarbon products were: model catalysts>commercial FCC catalyst>E-Cats. However, when the process conditions more closely resembled to FCC conditions, the fresh commercial FCC catalyst was more favourable in terms of the yield of volatile hydrocarbon products. The degradation of HDPE over E-Cats although reduced was similar to ASA in product selectivity and yield, and the level of metal contamination did not affect the product stream generated. A simple economic evaluation of polymer recycling process is reported showing that a catalytic system based on E-Cats appears comparable in costs to a commercial thermal cracking plant.  相似文献   

10.
黄朝晖  刘乃旺 《化工进展》2022,41(1):453-460
金属污染是导致流化催化裂化(FCC)催化剂失活的重要因素,充分利用沉积的重金属是废FCC催化剂资源化的关键。本文将废FCC催化剂引入到轻质油品吸附脱硫领域,以脱除液化石油气(LPG)中的二甲基二硫醚作为考核目标,验证了废FCC催化剂作为脱硫剂的可行性。除去废FCC催化剂表面积炭后,其脱硫性能得到明显改善,在常温、质量空速为4.0h-1的条件下,LPG中硫化物质量分数从382mg/m3脱除至40mg/m3。镧、铁、镍、钒、钙、锑6种金属在新鲜催化剂和焙烧后废催化剂上的总质量分数从10.2%升高至46.6%,6种金属按照对应含量分别固载在新鲜催化剂上,脱硫效果较未改性新鲜催化剂均有明显提升。验证实验表明,导致FCC催化剂失活的金属具有较高脱硫活性,废FCC催化剂作为轻质油品脱硫剂具备工业前景。  相似文献   

11.
以混合废塑料和焦化蜡油为原料,共催化裂解制备燃料油,克服了废塑料裂解中塑料粘稠度大且传热效率低、裂解炉中温度极不均匀、反应时间长、气体和固体收率高、液体收率低和易结焦等难题。详细考察焦化蜡油与混合废塑料质量比和催化剂用量对产物组成的影响以及FCC催化剂的重复使用性能。结果表明,在焦化蜡油与混合废塑料质量比为2、FCC催化剂用量为混合废塑料质量的10%、终温460 ℃并保持4 h条件下,燃料油收率达到96.67%,气体收率和釜残率分别仅有0.27%和1.53%。焦化蜡油的添加使液相产物中重组分增多,轻组分减少。FCC催化剂的重复使用性能好,催化剂重复使用5次,液体收率大于85%。采用混合废塑料与焦化蜡油共催化裂解的工艺不仅为“白色污染”的处理开辟了一条新途径,而且扩大了焦化蜡油的应用范围。  相似文献   

12.
采用小型提升管催化裂化试验装置评价研制的DOC-Ⅰ降烯烃催化剂的催化裂化反应性能。结果表明,在反应温度500 ℃、剂油质量比6和停留时间1.99 s条件下,DOC-Ⅰ催化剂上原料油的转化率达75.01%,较参比催化剂提高1.79个百分点,相应的液化气产率降低0.28个百分点,汽油产率增加2.9个百分点,烯烃含量下降5.21个百分点,异构烷烃和芳烃含量明显增加,产品分布有效改善。表明研制的DOC-Ⅰ催化剂具有较好的催化裂化性能和降烯烃能力。  相似文献   

13.
A mixture of postconsumer polyolefin waste (PE/PP) was pyrolyzed over cracking catalysts using a fluidizing reaction system similar to the fluid catalytic cracking (FCC) process operating isothermally at ambient pressure. Experiments carried out with various catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. Greater product selectivity was observed with a commercial FCC equilibrium catalyst (Ecat‐F1) with more than 50 wt % olefins products in the C3‐C6 range. A kinetic model based on a lumping reaction scheme for the observed products and catalyst coking deactivations has been investigated. The model gave a good representation of experiment results. Moreover, this model provides the benefits of lumping product selectivity, in each reaction step, in relation to the performance of the FCC equilibrium catalyst used, the effect of reaction temperature, and the particle size selected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
催化裂化轻汽油在ZSM-5分子筛催化剂上裂化反应的研究   总被引:2,自引:0,他引:2  
刘博  刘冬梅  魏民  马骏  王海彦 《辽宁化工》2005,34(8):332-334
以ZSM-5分子筛为催化剂,在小型固定床反应器上,进行了催化裂化轻汽油的裂化反应。考察了反应温度和空速对催化裂化轻汽油裂化反应气液相收率和产品分布的影响。实验结果表明,ZSM-5分子筛催化剂具有较强的裂化活性和氢转移活性。在保证裂化转化率的条件下,提高反应温度和空速可以抑制催化剂上氢转移反应的发生。以ZSM-5分子筛为催化剂上的催化裂化反应中,温度、空速是影响转化率和选择性的重要因素,因此可以通过改变温度、空速来提高目的产物的选择性。但是,单纯依靠改善反应条件,不能使目的产物的收率和选择性达到理想的程度,还必须对催化剂进行改性。ZSM-5分子筛催化剂上催化裂化反应的研究为ZSM-5分子筛催化剂的进一步改性,及ZSM-5分子筛催化剂在轻汽油催化裂解和汽油改质方面的进一步应用提供了试验依据。  相似文献   

15.
Catalytic degradation of high density polyethylene (HDPE) using silica-alumina has been investigated in a thermogravimetric analyser, and the degradation kinetics determined using a population balance model recently developed in our laboratory. The incorporation of multisite adsorption into the model greatly improved the fit to experimental data. It is proposed that both thermal and catalytic cracking occur simultaneously, effectively through a two-step process: cracking of the large initial polymer molecules dominated by the catalyst with an activation energy of approximately 174 kJ/mol, followed by further breakage strongly influenced by thermal cracking with an activation energy of approximately 256 kJ/mol, so that it is the thermal degradation that is especially responsible for over-cracking and formation of gaseous products. In addition, it is found that the pre-exponential factor has a linear dependence on the catalyst loading. The breakage kernel used in the model allows for random scission, with mid-point being the most probable, so that the product distribution does not comprise a single peak moving smoothly through time—but peaks form at several discrete sizes. The model can predict product distributions at various conditions; however, as the model does not incorporate any specific mechanisms for adsorption and reaction, more direct investigation of the product distributions is also needed. This is of industrial importance as these products are economically attractive for the production of liquid fuels. The required reaction time can be predicted for a specific product distribution.  相似文献   

16.
催化裂化吸附转化加工焦化蜡油工艺   总被引:1,自引:0,他引:1  
分析了焦化蜡油(CGO)与直馏蜡油(VGO)的性质,焦化蜡油与直馏蜡油性质相差较大,主要表现在焦化蜡油残炭、碱氮化合物、胶质、沥青质及金属含量较直馏蜡油高,催化裂化(FCC)直接掺炼焦化蜡油,会造成转化率降低,产物分布恶化,运转周期缩短。通过常规催化裂化加工焦化蜡油工艺与FCC通过吸附转化工艺加工焦化蜡油比较,得出催化裂化吸附转化加工焦化蜡油工艺可以明显改善产物分布,提高转化率,降低碱氮化合物对催化剂的毒害作用,提高装置的整体经济效益。  相似文献   

17.
Dehydrohalogenation during pyrolysis of brominated flame retardant containing polystyrene (brominated high impact polystyrene (HIPS-Br)) mixed with polyvinylchloride (PVC) was carried out in a laboratory scale batch process. Thermal and catalytic degradation of HIPS-Br mixed with PVC on carbon composite of iron oxide (TR-00301) catalyst was investigated. The thermal degradation of waste plastics (HIPS-Br/PVC) yielded liquid products with 55,000 ppm bromine and 4300 ppm chlorine content in oil. Catalytic degradation (4 g; TR-00301) of HIPS-Br/PVC waste plastics at 430 °C produced halogen-free clean oil, which can be used as a fuel oil or chemical feedstock. The main liquid products during catalytic degradation were benzene, toluene, styrene, ethyl benzene, α-methyl styrene, butyl benzene, 1,2-dimethyl benzene etc. The average carbon number of the liquid products produced during catalytic degradation (9.3) of waste plastics was less than that of the thermal degradation (10.4) and the density of liquid products was found to be lower during the catalytic degradation than the thermal degradation. The possibility of a single step catalytic process for the conversion of halogenated waste plastics into fuel oil with the simultaneous removal of chlorine and bromine content from the oil was demonstrated.  相似文献   

18.
催化汽油改质降烯烃多产丙烯反应规律的研究   总被引:1,自引:0,他引:1  
在小型固定流化床实验装置上,以燕山石化催化汽油为原料,对催化汽油改质过程进行了实验研究,并对反应过程气体产品和液体产品的组成进行了详细分析,考察了反应温度、重时空速、剂油比以及催化剂的活性对改质过程产物分布的影响,发现在催化汽油改质过程中,各操作条件对改质过程产物分布均有不同程度的影响,通过选择合适的操作条件,在保证低烯烃含量的同时,实现多产丙烯是可行的,在适宜的条件下,汽油烯烃体积分数可降到11.8%,同时,液化气中丙烯质量分数达到了44.4%.  相似文献   

19.
A mixture of hospital post-commercial polymer waste (LDPE/HDPE/PP/PS) was pyrolyzed over various catalysts using a fluidized-bed reactor operating isothermally at ambient pressure. The yield of volatile hydrocarbons with zeolitic catalysts (ZSM-5 > MOR > USY) were higher than with non-zeolitic catalysts (MCM-41 > ASA). MCM-41 with large mesopores and ASA with weaker acid sites resulted in a highly olefinic product mixture with a wide carbon number distribution, whereas USY yielded a saturate-rich product mixture with a wide carbon number distribution and substantial coke levels. The systematic experiments discussed in this paper show that the use of various catalysts improves the yield of hydrocarbon products and provide better selectivity in the product distributions. A novel developed model based on kinetic and mechanistic considerations which take into account chemical reactions and catalyst deactivation for the catalytic degradation of commingled polymer waste has been investigated. This model represents the benefits of product selectivity for the chemical composition such as alkanes, alkenes, aromatics and coke in relation to the performance and the particle size selection of the catalyst used as well as the effect of the fluidizing gas and reaction temperature.  相似文献   

20.
陈治平  徐建  石冈  范煜  鲍晓军 《化工学报》2014,65(7):2751-2760
采用工业Ni-Mo/Al2O3-HZSM-5催化剂在小型固定床加氢微反装置上对催化裂化(FCC)汽油临氢改质过程的反应特性进行了研究,通过考察反应温度、压力、空速和氢油体积比对改质后的FCC汽油烃类组成的影响,分析了汽油中不同烃类的转化性能。结果表明,氢油比对产物组成影响不大,高温、低压、低空速有利于增加芳烃的选择性,低温、高压、高空速则有利于增加异构烷烃的选择性;临氢改质后,FCC汽油的烯烃含量明显降低,芳烃和异构烷烃含量增加,因而产品汽油的辛烷值基本保持不变;全馏分、轻馏分和重馏分FCC汽油临氢改质实验结果表明,烯烃含量较高的轻馏分具有更高的转化活性;在FCC汽油临氢改质过程中,同碳数的端烯烃反应活性高于内烯烃,直链烯烃的反应活性高于支链烯烃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号