共查询到18条相似文献,搜索用时 31 毫秒
1.
2.
采用等离子熔覆技术在Q235钢基体上制备了fcc结构的Co Cr Cu Fe Ni Mn高熵合金熔覆层,并研究了熔覆层的组织结构以及合金元素在基体中的扩散。结果发现,熔覆层显微组织为树枝晶,枝晶间为富Cu面心立方固溶体,晶格常数为0.3597 nm,有纳米编织组织析出。枝晶内为多种元素固溶的面心立方固溶体,晶格常数为0.3664 nm。高熵组元元素在熔合线靠近热影响区一侧形成元素的过渡区,过渡区宽度约为10μm。临近熔合线的热影响区内出现了大约70μm宽的铁素体带,该区域的珠光体因脱碳分解生成铁素体,Co在该区域扩散的距离最远。 相似文献
3.
用等离子熔覆技术在Q235钢上制备了CoCrFeMnNiCx(x=0, 0.05, 0.1, 0.2,x为摩尔分数)高熵合金熔覆层,并研究了熔覆层的合金成分,显微组织、相结构以及显微硬度。结果表明: C0、C0.05、C0.1和C0.2合金熔覆层的显微组织均为树枝晶结构,其中,C0合金熔覆层只形成了简单的面心立方相,其晶格常数为0.359 7 nm;加入C后,合金熔覆层仍以简单面心立方为主,只是晶格常数有所增加,分别为0.360 2(C0.05)、0.360 3(C0.1)和0.361 8(C0.2) nm;同时有少量Cr7C3生成,且随着C含量的增加,Cr7C3的形态由棒条状变为多边形颗粒状。由于少量的C元素在熔覆层中既可以作为固溶元素起到间隙固溶强化效果,也可与Cr元素形成Cr7C3起到第二相弥散强化作用,所以随含C量的增加,熔覆层显微硬度呈增大的趋势,当C的摩尔比为0.2时,熔覆层硬度达到354.7 HV0.5。 相似文献
5.
6.
系统研究了等离子熔覆技术制备(CuCoCrFeNi)95B5高熵合金涂层的组织和力学性能。结果表明:等离子熔覆过程中的快速凝固条件有利于抑制涂层中金属间化合物的析出,涂层具有fcc和bcc有序固溶体结构。涂层的硬度为6.53GPa,弹性模量为213 GPa。(CuCoCrFeNi)95B5高熵合金涂层具有良好的耐磨性,其相对耐磨性为Q235钢的2.3倍;其主要磨损机理为切削与犁沟机制。 相似文献
7.
Q235钢等离子弧熔覆铁基合金涂层的组织分析 总被引:3,自引:1,他引:3
采用等离子弧熔覆技术,选择合适的工艺参数,在Q235钢基体上熔覆Fe-Cr-B-Si-C铁基合金耐磨涂层.采用OM、SEM、EDS等研究了熔覆层的组织,并用显微硬度计测试了熔覆层的显微硬度分布.结果表明:熔覆层与钢基体呈冶金结合,组织致密;熔覆层主要由马氏体和Cr23C6组成,显微硬度从表面向基体逐渐降低,呈梯度分布,近表面的最高硬度达到670HV0.2. 相似文献
8.
目的 研究等离子熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响。方法 采用等离子堆焊工艺在65Mn钢基体上制备等摩尔比的FeCoCrNiMn高熵合金涂层。通过观察涂层的宏观表面特征来判断等离子熔覆技术制作高熵合金涂层的宏观效果。利用金相显微镜(OM)、扫描电镜(SEM)以及X射线衍射技术(XRD)观察涂层显微组织,并分析涂层的成分和相组成。采用维氏硬度显微测试计测量合金涂层的表面硬度和基体至涂层的层深硬度。结果 等离子熔覆技术制备的合金涂层无裂纹,涂层平均厚度达到2 mm。涂层元素与熔覆粉末元素比例一致,除去部分Fe元素由基体进入涂层之外,涂层依旧为单相FCC固溶体结构,组织形态为枝晶。涂层与基体结合处可以观察到明显的柱状晶区和热影响区(HAZ)。随着电流的增大,枝晶组织逐渐变粗,而FeCoCrNiMn高熵合金涂层的表面硬度逐渐减小,在190 A处,硬度发生突变达到最大值366.3HV,170 A处为最小值258.78HV。沿层深方向,涂层硬度变化不大,热影响区内由上到下,硬度先增大后减小。结论 等离子熔覆技术制备高熵合金涂层有明显的优势,且具有制作大面积表面涂层的潜力,涂层厚度可以达到毫米级。电流大小改变,FCC相组成没有发生改变,而组织结构发生改变,随着电流变大,枝晶组织变粗,涂层硬度逐渐下降。 相似文献
9.
采用等离子熔覆技术在20钢表面制备了不同成分的CrMnFeCoNiMox(x=0、1、1.5)系高熵合金涂层。通过光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)及X射线衍射仪(XRD)等分析了涂层的微观结构;利用显微硬度计和电化学工作站分析了涂层的硬度和耐蚀性。结果表明:在不含Mo的高熵合金(HEA)涂层中存在大量的枝晶和胞状晶,添加Mo元素后主要为等轴晶。3种涂层的基体组织主要为体心立方(BCC)结构,Mo元素的添加使涂层中形成了一定量的第二相。CrMnFeCoNiMo1.5涂层的第二相含量最多,硬度最大(约720 HV0.3),约为基材的4倍。Mo元素添加后,涂层的耐蚀性显著提升,CrMnFeCoNiMo1涂层的耐蚀性能最好,腐蚀速率为0.141 mm/year,约为基材的1/20。 相似文献
10.
目的 在普通低碳钢表面制备含难熔金属Mo的CoCrFeNiMo高熵合金熔覆层,研究熔覆层的组织结构及性能。方法 将Co、Cr、Fe、Ni、Mo金属单质粉末按等摩尔比进行配制并混合均匀,利用等离子熔覆法在Q235钢表面制备CoCrFeNiMo高熵合金熔覆层,采用X射线荧光光谱仪(XRF)、X射线衍射仪(XRD)、金相显微镜(OM)、扫描电子显微镜(SEM)、显微硬度计对熔覆层的合金成分、相结构、显微组织和硬度进行研究。结果 在等离子熔覆过程中存在元素烧损现象,熔覆层的实际成分为Co1.17Cr0.92Ni1.06Fe0.92Mo0.92(摩尔分数);熔覆层与基材形成了良好的冶金结合,熔覆层主要由FCC相组成,同时夹杂少量富Mo、Cr的σ相;熔覆层显微组织为树枝晶,枝晶内为固溶多种元素的FCC相,枝晶间是由FCC相和富Mo、Cr的σ相组成的共晶组织。高熵合金物相形成规律较为复杂,其相结构不能仅由热力学参数来预判,仍需要实验结果的验证。由于Mo元素的固溶强化及σ相的沉淀强化,使得熔覆层的硬度明显提高,表面硬度约为485HV。结论 利用等离子熔覆法,在Q235钢表面成功制备了含难熔金属Mo的CoCrFeNiMo高熵合金熔覆层,显著提高了CoCrFeNi高熵合金的硬度。 相似文献
11.
目的 提高零部件的硬度和耐磨性。方法 采用Ni-Cr-B-Si、Co-Cr-B-Si自熔合金以及Cu粉在Q235钢基体上激光熔覆CoCrCuFeNi高熵合金涂层,激光功率为2.2、2.4 kW,扫描速度为9、12 mm/s,利用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分析涂层的微观组织,并测试了涂层的显微硬度。结果 Cu含量较高的涂层与基体形成了良好的冶金结合,但在涂层中存在严重的Cu偏析现象;Cu含量较低的涂层与基体结合处附近存在少量孔洞缺陷,局部区域具有调幅分解,涂层微观组织主要由树枝晶和枝晶间组成,树枝晶为FCC1,富Cu贫Cr,枝晶间为FCC2,富Cr贫Cu,还存在少量的纳米相,形成了具有C和B间隙固溶的CoCrCu0.4FeNi高熵合金涂层。熔覆的涂层厚度为2.19~2.58 mm,涂层枝晶厚度为2.2~7.3μm,且枝晶越小,硬度越高。涂层的显微硬度为280~300HV0.2,基体的硬度为110~130HV0.2,约为基体的2.5倍。结论 采用Ni-Cr-B-Si、Co-Cr-B-Si自熔合金和Cu粉激光熔覆了CoCrCuFeNi高... 相似文献
12.
等离子原位合成 VC 增强 CoCrCuFeNiMn 高熵合金基熔覆层微观组织研究 总被引:1,自引:1,他引:0
目的在廉价钢材表面制备原位自生碳化物增强高熵合金基熔覆层,研究熔覆层的微观结构及性能,为进一步探索高熵合金及其复合材料在表面工程中的应用提供实验范例和理论依据。方法利用等离子熔覆法在Q235钢表面原位制备出VC增强的CoCrCuFeNiMn(VC)x(x=0、0.1、0.2,摩尔比)高熵合金基熔覆层,采用X射线衍射仪、金相显微镜、扫描电子显微镜、透射电子显微镜、显微硬度计,对熔覆层的相结构、微观组织以及硬度进行分析。结果 CoCrCuFeNiMn(VC)x(x=0.1、0.2)熔覆层由高熵固溶体基体相(FCC1+FCC2)以及VC增强相组成。VC呈颗粒状或花瓣状,主要在基体的枝晶间偏聚,少量在枝晶内析出。透射电子显微镜实验结果显示,原位自生VC与基体之间的界面洁净,未发现明显的反应产物,符合原位自生复合材料的界面特征。在一定范围内(x=0~0.2),熔覆层的硬度随着VC含量的增加而升高。结论在Q235钢表面采用等离子熔覆法可以原位制备出VC增强CoCrCuFeNiMn高熵合金基熔覆层,熔覆层与基材呈冶金结合,原位自生VC对基体起到了强化作用。 相似文献
13.
采用氩弧熔覆工艺在Q235基体上制备了等摩尔比FeCrNiCoMn高熵合金涂层,采用倒置金相显微镜、自动转塔显微硬度计及3D激光共聚焦显微镜对高熵合金涂层组织及显微硬度进行了分析。结果表明,不同熔覆电流下,FeCrNiCoMn高熵合金涂层均主要由枝晶组织和枝晶间组织组成,且其枝晶间组织中均生成了大量纳米级的析出物。在180~190 A范围内,随熔覆电流的增大,组织显著细化,且枝晶间组织中纳米级析出物形状规则,分布均匀;熔覆电流增大至200 A,涂层组织过度粗大,枝晶间组织被破坏,枝晶间组织中纳米析出物形状、分布均不理想。不同熔覆电流下,FeCrNiCoMn高熵合金涂层表面显微硬度差别不大。180、190 A熔覆电流制备的涂层比200 A熔覆电流制备的涂层截面显微硬度分布更理想。 相似文献
14.
目的通过等离子合金化高熵合金涂层,提高铸铁表面耐磨性。方法采用等离子合金化法,以等摩尔比的Al,Co,Cr,Cu,Mn,Ni单质金属粉在HT250铸铁表面制备高熵合金复合涂层。通过SEM,EDS,XRD等分析涂层的组织,测试涂层的显微硬度分布。结果由于铸铁基体少量熔化,基体中的Fe和C元素进入涂层,形成了厚度约为0.2 mm的Al Co Cr Cu FexMn Ni Cx高熵合金涂层。从涂层表面到基材,体系的混合熵呈高熵-中熵-低熵的梯度变化。涂层主要由高熵合金的枝晶和枝晶间渗碳体、σ相等组织构成,主要有FCC,BCC,Fe3C及σ相。涂层的显微硬度大约为350~600HV0.2,明显高于铸铁基体的硬度(200~230HV0.2)。结论通过等离子合金化可以在铸铁表面形成高熵合金+碳化物的复合涂层,提高了铸铁的显微硬度,有利于铸铁表面耐磨性的提高。 相似文献
15.
采用氩弧熔覆工艺在06Cr19Ni10钢基体上制备等摩尔比AlCrFeCoNiCu高熵合金涂层。采用10%草酸溶液体系对不同熔覆电流制备的高熵合金涂层进行电解腐蚀,采用倒置金相显微镜观察试样显微组织,采用3D激光共聚焦显微镜对高熵合金涂层中的细小析出物进行微区三维显微形貌分析,并采用自动转塔显微硬度计对其截面显微硬度进行分析。结果表明,以不同熔覆电流制备的AlCrFeCoNiCu高熵合金涂层均由枝晶组织、枝晶间组织、块状析出物以及纳米级析出物组成。以240 A熔覆电流制备的涂层由于热输入过大,过热粗化的枝晶组织在凝固过程中发生臂端部位的熔解。240 A熔覆电流制备的熔覆涂层的表面硬度达到最高,但截面硬度较低。230 A熔覆电流制备的熔覆涂层的表面硬度、截面硬度均较理想。 相似文献
16.
采用预置法等离子弧熔覆技术,在Q235钢基体表面熔覆了添加50%镍包WC(碳化钨)的Fe-Cr-B-Si合金粉末,制备了具有冶金结合的复合涂层.采用SEM,EDS,XRD等研究了涂层的组织,利用显微硬度计测试了涂层的显微硬度分布.结果表明,涂层与基体为冶金结合,其中部分WC分解,剩余WC主要分布在涂层的中、底部并与涂层结合良好,最后形成以γ-Fe为基,大颗粒WC,枝晶Fe3W3C3Fe6W6C,W2C,W2C等增强的复合涂层,涂层的显微硬度可达900~1100 HV0.2. 相似文献
17.
18.
铸铁表面等离子熔覆Fe-Cr-Si-B涂层的组织特征 总被引:2,自引:0,他引:2
利用常压弧光等离子体在铸铁表面熔覆Fe-Cr-Si-B合金粉末制备耐磨涂层,采用金相显微镜、扫描电镜、X射线衍射仪、显微硬度计对熔覆层的组织和性能进行了分析.结果表明,熔覆层组织主要由近似于六方形、U形、L形或H形的初生(Cr,Fe)7C3相及短杆状或小块状(Cr,Fe)7C3共晶碳化物、,cr)和Fe3C组成;熔覆层与基体界面形成细小的共晶莱氏体组织,在界面处熔覆层与基体中的合金元素发生了相互扩散,形成具有冶金结合的涂层;熔覆层显微硬度可达600~1200HV0.2. 相似文献