首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In this letter, a new complementary Hartley (C-Hartley) voltage controlled oscillator (VCO) with fully differential outputs is proposed, in which the self-biasing configuration is introduced to solve the biasing difficulty of a Hartley VCO by employing a five-port transformer. The proposed C-Hartley VCO with the center frequency of 5.6 GHz is implemented in a 1P6M 0.18 $mu$m CMOS process. The measurement result shows that the phase noise is ${-}123.6$ dBc/Hz at 1 MHz offset frequency, while dissipating 6.5 mA from 1.6 V supply with the FOM of ${-}188.5$ dBc.   相似文献   

2.
A wide band CMOS LC-tank voltage controlled oscillator (VCO) with small VCO gain $(K_{VCO})$ variation was developed. For small $K_{VCO}$ variation, serial capacitor bank was added to the LC-tank with parallel capacitor array. Implemented in a 0.18 $mu{rm m}$ CMOS RF technology, the proposed VCO can be tuned from 4.39 GHz to 5.26 GHz with the VCO gain variation less than 9.56%. While consuming 3.5 mA from a 1.8 V supply, the VCO has $-$ 113.65 dBc/Hz phase noise at 1 MHz offset from the carrier.   相似文献   

3.
A W-band (76–77 GHz) active down-conversion mixer has been demonstrated using low leakage (higher ${rm V}_{{rm T}}$) NMOS transistors of a 65-nm digital CMOS process with 6 metal levels. It achieves conversion gain of ${-}8$ dB at 76 GHz with a local oscillation power of 4 dBm (${sim-}2$ dBm after de-embedding the on-chip balun loss), and 3 dB bandwidth of 3 GHz. The SSB noise figures are 17.8–20 dB (11.3–13.5 dB after de-embedding on-chip input balun loss) between 76 and 77 GHz. ${rm IP}_{1{rm dB}}$ is ${-}6.5$ dBm and IIP3 is 2.5 dBm (${sim-}13$ and ${sim}-4$ dBm after de-embedding the on-chip balun loss). The mixer consumes 5 mA from a 1.2 V supply.   相似文献   

4.
This letter presents an ultra-low voltage quadrature voltage-controlled oscillator (QVCO). The LC-tank QVCO consists of two low-voltage voltage-controlled oscillators (VCOs) with the body dc biased at the drain bias through a resistor. The superharmonic and back-gate coupling techniques are used to couple two differential VCOs to run in quadrature. The proposed CMOS QVCO has been implemented with the UMC 90 nm CMOS technology and the die area is 0.827 $, times ,$0.913 mm $^{2}$. At the supply voltage of 0.22 V, the total power consumption is 0.33 mW. The free-running frequency of the QVCO is tunable from 3.42 to 3.60 GHz as the tuning voltage is varied from 0.0 to 0.3 V. The measured phase noise at 1 MHz offset is ${-}112.97$ dBc/Hz at the oscillation frequency of 3.55 GHz and the figure of merit (FOM) of the proposed QVCO is about ${-}188.79$ dBc/Hz.   相似文献   

5.
An edge missing compensator (EMC) is proposed to approach the function of an ideal PD with $pm 2 ^{N-1} times 2pi $ linear range with $N$-bit EMC. A PLL implemented with a 9-bit EMC achieves 320 MHz frequency hopping within 10 $~mu{hbox {s}}$ logarithmically which is about 2.4 times faster than the conventional design. The reference spur of the PLL is ${-}{hbox {48.7~dBc}}$ and the phase noise is ${-}hbox{88.31~dBc/Hz}$ at 10 kHz offset with $K_{rm VCO}= -$ 2 GHz/V.   相似文献   

6.
A 0.18 $mu$ m CMOS quadrature voltage-controlled oscillator with an extremely-low phase noise is presented. The excellent phase noise performance is accomplished by integration of the back-gate quadrature phase coupling and source resistive degeneration techniques into a complementary oscillator topology. The measured phase noise is as low as ${-}133$ dBc/Hz at 1 MHz offset from 3.01 GHz. The output phase imbalance is less than 1$^{circ}$ . The output power is $-1.25{pm} 0.5$ dBm and harmonic suppression is greater than 30.8 dBc. The oscillator core consumes 5.38 mA from a 1.5 V power supply. This QVCO achieves the highest figure-of-merit of ${-}193.5$ dBc/Hz.   相似文献   

7.
This letter presents the microwave performance of a sub-100 $mu{rm W}$ Ku-band differential-mode resonant tunneling diode (RTD)-based voltage controlled oscillator (VCO) with an extremely low power consumption of 87 $mu{rm W}$ using an InP-based RTD/HBT MMIC technology. In order to achieve the extremely low-power Ku-band RTD VCO, the device size of RTD is scaled down to $0.6times 0.6 mu{rm m}^{2}$. The obtained dc power consumption of 87 $mu{rm W}$ is found to be only 1/18 of the conventional-type MMIC VCOs reported in the Ku-band. The fabricated RTD VCO has a phase noise of $-$100.3 dBc/Hz at 1 MHz offset frequency and a tuning range of 140 MHz with the figure-of-merit (FOM) of $-$194.3 dBc/Hz.   相似文献   

8.
A 3.3 GHz CMOS quadrature voltage-controlled oscillator (QVCO) with very low phase noise is presented. The back-to-back series varactor configuration is employed in the LC tank for minimizing the AM-to-PM noise conversion. The backgate coupling for quadrature phase inter-locking further eliminates the noise contribution from coupling transistors and also reduces power consumption. The implemented QVCO in 0.18 $mu{rm m}$ CMOS technology achieved very low phase noise of ${- 133}~{rm dBc}/{rm Hz}$ at 1 MHz offset, where the total power consumption is 4.4 mW from a 1.0 V supply. The chip has a very high FOM of ${- 196.6}~{rm dBc}/{rm Hz}$.   相似文献   

9.
In this letter, we present the measured performance of a differential Vackar voltage-controlled oscillator (VCO) implemented for the first time in CMOS technology. The Vackar VCO provided good isolation between the LC tank and the loss-compensating active circuit; thus, excellent frequency stability was achieved over the frequency tuning range. The Vackar VCO was implemented using nMOS transistors and an LC tank in a 0.18 $mu{rm m}$ RF CMOS process. The oscillation frequency ranged from 4.85 to 4.93 GHz. The measured phase noise of the Vackar VCO at 1 MHz offset was $-124.9 ~{rm dB}/{rm Hz}$ at 4.9 GHz with a figure-of-merit (FOM) of $-188 ~{rm dBc}/{rm Hz}$.   相似文献   

10.
A 2 to 40 GHz broadband active balun using 0.13 $mu{rm m}$ CMOS technology is presented in this letter. Using two-stage differential amplified pairs, the active balun can achieve a wideband performance with the gain compensation technique. This active balun exhibits a measured small signal gain of ${0} pm{1}~{rm dB}$, with the amplitude imbalances below 0.5 dB and the phase differences of ${180} pm {10} ^{circ}$ from 2 to 40 GHz. The core active balun has a low power consumption of 40 mW, and a compact area of 0.8 mm $times,$ 0.7 mm. This proposed balun achieved the highest operation frequency, the widest bandwidth, and the smallest size among all the reported active baluns.   相似文献   

11.
This letter presents a high conversion gain double-balanced active frequency doubler operating from 36 to 80 GHz. The circuit was fabricated in a 200 GHz ${rm f}_{rm T}$ and ${rm f}_{max}$ 0.18 $mu$m SiGe BiCMOS process. The frequency doubler achieves a peak conversion gain of 10.2 dB at 66 GHz. The maximum output power is 1.7 dBm at 66 GHz and ${-}3.9$ dBm at 80 GHz. The maximum fundamental suppression of 36 dB is observed at 60 GHz and is better than 20 dB from 36 to 80 GHz. The frequency doubler draws 41.6 mA from a nominal 3.3 V supply. The chip area of the active frequency doubler is 640 $mu$m $,times,$424 $mu$m (0.272 mm $^{2}$) including the pads. To the best of authors' knowledge, this active frequency doubler has demonstrated the highest operating frequency with highest conversion gain and output power among all other silicon-based active frequency doublers reported to date.   相似文献   

12.
This paper presents a single-chip CMOS quad-band (850/900/1800/1900 MHz) RF transceiver for GSM/GPRS/EDGE applications which adopts a direct-conversion receiver, a direct-conversion transmitter and a fractional-N frequency synthesizer with a built-in DCXO. In the GSM mode, the transmitter delivers 4 dBm of output power with 1$^{circ}$ RMS phase error and the measured phase noise is ${-}$164.5 dBc/Hz at 20 MHz offset from a 914.8$~$MHz carrier. In the EDGE mode, the TX RMS EVM is 2.4% with a 0.5 $~$dB gain step for the overall 36 dB dynamic range. The RX NF and IIP3 are 2.7 dB/ ${-}$12 dBm for the low bands (850/900 MHz) and 3 dB/${-}$ 11 dBm for the high bands (1800/1900 MHz). This transceiver is implemented in 0.13 $mu$m CMOS technology and occupies 10.5 mm$^{2}$ . The device consumes 118 mA and 84 mA in TX and RX modes from 2.8 V, respectively and is housed in a 5$,times,$ 5 mm$^{2}$ 40-pin QFN package.   相似文献   

13.
A wideband low-noise amplifier (LNA) based on the current-reused cascade configuration is proposed. The wideband input-impedance matching was achieved by taking advantage of the resistive shunt–shunt feedback in conjunction with a parallel LC load to make the input network equivalent to two parallel $RLC$-branches, i.e., a second-order wideband bandpass filter. Besides, both the inductive series- and shunt-peaking techniques are used for bandwidth extension. Theoretical analysis shows that both the frequency response of input matching and noise figure (NF) can be described by second-order functions with quality factors as parameters. The CMOS ultra-wideband LNA dissipates 10.34-mW power and achieves ${ S}_{11}$ below $-$8.6 dB, ${ S}_{22}$ below $-$10 dB, ${ S}_{12}$ below $-$26 dB, flat ${ S}_{21}$ of 12.26 $pm$ 0.63 dB, and flat NF of 4.24 $ pm$ 0.5 dB over the 3.1–10.6-GHz band of interest. Besides, good phase linearity property (group-delay variation is only $pm$22 ps across the whole band) is also achieved. The analytical, simulated, and measured results agree well with one another.   相似文献   

14.
A 2.45/5.2 GHz dual-band Gilbert downconversion mixer with image rejection function is presented, which is implemented using the 0.18 $mu$m CMOS technology. The proposed differential dual-band image rejection circuitry is employed for the 2.45/5.2 GHz WLAN application to effectively diminish the dc power consumption and complexity of circuit design compared to the traditional Hartley or Weaver architectures. Moreover, the cross-connected pair consisted of NMOS and PMOS transistors in the proposed notch filter will further ameliorate the image rejection capability. The IC prototype achieves conversion gain of $10.5/11$ dB, IIP3 of ${-}4.9/-5.2$ dBm for ${rm RF}= 2.45/5.2$ GHz and ${rm IF}=500$ MHz while the image rejection ratio is better than 36/45 dB in the whole operation bandwidth.   相似文献   

15.
This paper presents a ${g} _{ m}$-boosted differential gate-to-source feedback Colpitts (GS-Colpitts) CMOS voltage-controlled oscillator (VCO) that consumes a lower oscillation start-up current. The proposed architecture allows a wider range of saturation mode operation for the switching transistors, which helps suppress AM-to-FM conversion by these transistors. In addition, the phase noise contribution of the flicker noise in the switching transistor is reduced through the capacitor feedback network of the Colpitts oscillator. As a result, the proposed topology can achieve better phase noise performance and a higher figure of merit (FOM) compared to a conventional NMOS-only cross-coupled VCO. The proposed VCO is implemented in a 0.18-$mu{hbox {m}}$ CMOS for 1.78 to 1.93 GHz operation. At 1.86 GHz, the measurements show phase noise of $-$105 and $-hbox{128~dBc/Hz}$ (corresponding to ${rm FOM}= 191.2$) at offsets of 100 kHz and 1 MHz, respectively, while dissipating 1.8 mA from a 0.9-V supply.   相似文献   

16.
Single- and dual-polarized slot-ring antennas with wideband tuning using varactor diodes have been demonstrated. The single-polarized antenna tunes from 0.95 to 1.8 GHz with better than ${-}13$ dB return loss. Both polarizations of the dual-polarized antenna tune from 0.93 to 1.6 GHz independently with better than ${-}10$ dB return loss and $> !20!$ dB port-to-port isolation over most of the tuning range. The capacitance of the varactor diodes varies from 0.45 to 2.5 pF, and the antennas are printed on 70 $,times,$70 $,times,$0.787 mm ${^3}$ substrates with ${epsilon_{rm r} = 2.2}$. The dual-polarized slot-ring antenna can either be made both frequency- and polarization-agile simultaneously, or can operate at two independent frequencies on two orthogonal polarizations. To our knowledge, this is the first dual-polarized tunable antenna with independent control of both polarizations over a 1.7:1 frequency range.   相似文献   

17.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

18.
A new differential voltage-controlled oscillator (VCO) is designed and implemented in a 0.13 $mu{rm m}$ CMOS 1P8M process. The designed circuit topology is an all nMOS LC-tank Clapp-VCO using a series-tuned resonator. At the supply voltage of 0.9 V, the output phase noise of the VCO is $-$110.5 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 18.78 GHz, and the figure of merit is $-$188.67 dBc/Hz. The core power consumption is 5.4 mW. Tuning range is about 3.43 GHz, from 18.79 to 22.22 GHz, while the control voltage was tuned from 0 to 1.3 V.   相似文献   

19.
Using the transformer coupling technique, this letter presents a new quadrature voltage-controlled oscillator (QVCO) with bottom series-coupled transistors. The proposed CMOS QVCO has been implemented with the TSMC $0.13~mu{rm m}$ 1P8M CMOS process, and the die area is $1.03 times 0.914~{rm mm}^{2}$. At the supply voltage of 1.0 V, the total power consumption is 3.56 mW. The free-running frequency of the QVCO is tunable from 5.43 GHz to 5.92 GHz as the tuning voltage is varied from 0.0 V to 1.0 V. The measured phase noise at 1 MHz frequency offset is $-117.98~{rm dBc/Hz}$ at the oscillation frequency of 5.5 GHz and the figure of merit (FOM) of the proposed QVCO is $-187.27~{rm dBc/Hz}$.   相似文献   

20.
This letter presents a 30–100 GHz wideband and compact fully integrated sub-harmonic Gilbert-cell mixer using 90 nm standard CMOS technology. The sub-harmonic pumped scheme with advantages of high port isolation and low local oscillation frequency operation is selected in millimeter-wave mixer design. A distributed transconductance stage and a high impedance compensation line are introduced to achieve the flatness of conversion gain over broad bandwidth. The CMOS sub-harmonic Gilbert-cell mixer exhibits ${-}{hbox{1.5}} pm {hbox{1.5}}$ dB measured conversion gain from 30 to 100 GHz with a compact chip size of 0.35 mm$^{2}$. The OP$_{1 {rm dB}}$ of the mixer is ${-}$ 10.4 dBm and ${-}$9.6 dBm at 77 and 94 GHz, respectively. To the best of our knowledge, the monolithic microwave integrated circuit is the first CMOS Gilbert-cell mixer operating up to 100 GHz.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号