首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This short review presents the current stage of knowledge of our laboratory on the mechanism of action of cathepsin D and estrogens on tumor progression, mostly based on studies of human breast and ovarian cancer cell lines. Cathepsin D (cath-D) overexpression in breast cancer cells is associated with increased risk of metastasis in patients as confirmed by a recent meta-analysis of clinical studies on node negative breast cancer patients. Transfection of a human cDNA cath-D expression vector increases the metastatic potential of a rat tumor cells line when intravenously injected into nude mice. The mechanism of cath-D induced metastasis seems to require maturation of the pro-enzyme, mostly in large acidic compartments identified as phagosomes. Cath-D is mitogenic in different cell types, and different substrates (growth inhibitors, precursors of growth factor etc.) are proposed to mediate this activity. A mitogenic effect of the pro-enzyme on transmembrane receptor is not totally excluded. The mitogenic activity of estrogens in several estrogen receptor positive breast and ovarian cancer cell lines is well established in our and other laboratories. By contrast the role of estrogens during early steps of metastasis, involving cell invasion through the basement membrane and cell motility is more controversial. The motility of several estrogen receptor (ER) positive breast (MCF7, T47D) and ovarian (BG-1, SKOV3, PEO4) cancer cell lines were studied in our laboratory using a modified Boyden chamber assay. We observed, in all cases, estradiol-induced inhibition of cancer cell invasion and motility. A similar inhibitory effect of estradiol was found when the wild-type ER was stably transfected in the ER-negative MDA-MB231 cells and 3Y1-Ad12 cancer cells. The mechanism of this inhibitory effect is unknown. In ovarian cancer, however it may involve intermediary proteins such as fibulin-1, an extracellular matrix protein that strongly interacts with fibronectin and which is induced by estrogen and secreted by ovarian cancer cells. In breast cancer cells other estrogen regulated proteins may be involved. We conclude that estrogens in ER-positive breast and ovarian cancers have a dual effect, since they stimulate tumor growth but inhibit invasion and motility. This may be consistent with the good initial prognostic value of ER-positive breast cancers compared to ER negative breast cancers noted in several clinical studies, and with the better prognosis of breast cancer occurring after a prolonged treatment of menopause by estrogen as described by the collaborative group on hormonal factors in breast cancer.  相似文献   

2.
In a previous study we showed that the levels of the intermediate filament proteins, cytokeratins 8, 18, and 19, in the nuclear matrix-intermediate filament (NM-IF) fraction from the hormone-dependent and estrogen receptor (ER)-positive human breast cancer cell line T-47D5 were regulated by estrogens. In contrast, estrogens did not regulate the cytokeratins in the NM-IF fraction of the hormone-independent and ER-positive cell line, T5-PRF. In this study, human breast cancer cells were treated with cis-diamminedichloroplatinum to cross-link protein to nuclear DNA in situ, and proteins bound to DNA were isolated. We show that cytokeratins 8, 18, and 19 of T-47D5 and T5-PRF were associated with nuclear DNA in situ. The levels of the cytokeratins 8, 18, and 19 bound to nuclear DNA or associated with the cytoskeleton of T-47D5 human breast cancer cells decreased when estrogens were depleted or the pure antiestrogen ICI 164,384 was added. In contrast, the cytokeratin levels associated with nuclear DNA or cytoskeleton were not significantly affected by estrogen withdrawal or antiestrogen administration in T5-PRF cells. These observations suggest that estrogen regulates the organization of nuclear DNA by rearrangement of the cytokeratin filament network in hormone-dependent, ER-positive human breast cancer cells and that this regulation is lost in hormone-independent, ER-positive breast cancer cells.  相似文献   

3.
4.
Retinoic acid inhibits proliferation and steroid receptor gene expression in human breast cancer cell lines. Retinoic acid receptors (RAR)alpha, -beta, and -gamma are expressed in these cells and the expression of RAR alpha is significantly greater in estrogen receptor (ER)-positive cells. This study was undertaken to determine whether the same relationship between RAR alpha and ER gene expression was present in human breast cancers and to explore the possibility that the higher level of RAR alpha in ER-positive cells was due to estrogen regulation of RAR alpha gene expression. RAR alpha and ER mRNA expression were determined by Northern blot analysis in 116 primary breast tumors; 94 (81%) tumors were ER-positive and of these 87 (93%) were also RAR alpha-positive. The coexpression of ER and RAR alpha was statistically significant (P = 0.0052 by chi 2 contingency analysis). There was also a positive correlation (by linear regression analysis) between the levels of expression of ER and RAR alpha mRNA (r2 = 0.251, P = 0.0001), which confirmed the relationship previously documented in breast cancer cell lines and suggested that RAR alpha expression may be modulated in breast cancer in vivo by estrogens acting via the ER. The ability of estradiol to regulate RAR alpha gene expression was examined in vitro using T-47D cells which had been rendered sensitive to estrogen by repeated passage in steroid-depleted medium. Estradiol increased RAR alpha gene expression, but not that of RAR beta or RAR gamma, in a concentration-dependent manner, with the effect being maximal at 10(-10) M and less marked at higher concentrations. The effect was rapid, being detectable 1 h after and maximal 6 h after treatment with 10(-10) M estradiol. Co-treatment of cells with estradiol and antiestrogens (tamoxifen or ICI 164384, 4 x 10(-7) M for 6 h) inhibited the estradiol induction of RAR alpha gene expression, demonstrating that the effect was ER mediated. The estradiol sensitivity of the effect was underscored by the demonstration that addition of untreated serum to cells growing under steroid-depleted conditions was sufficient to induce maximal RAR alpha gene expression. This effect was totally abolished by addition of ICI 164384. In summary, the demonstration that estradiol increased RAR alpha mRNA levels in breast cancer cells supports the hypothesis that the correlation between RAR alpha and ER gene expression in breast tumors and breast cancer cell lines is due to estradiol augmentation of RAR alpha gene expression.  相似文献   

5.
Recently, we reported that 5,4'-diaminoflavone (1) exhibits potent and specific growth-inhibitory activity against the estrogen receptor (ER)-positive human breast cancer cell line MCF-7. However, when compound 1 was incubated with S-9 mix, its metabolites were observed. Moreover, addition of S-9 mix to the medium caused the drastic decrease in activity of compound 1. Since the 6-, 8-, and 3'-positions were considered to be metabolized oxidatively in vivo from MO calculations, a series of 5,4'-diaminoflavone derivatives substituted at such putative metabolic positions with various functional groups were synthesized aiming at the metabolically stable derivatives. Among them, 5,4'-diamino-6,8,3'-trifluoroflavone (14d) exhibited strong growth-inhibitory activity against MCF-7 cells even in the presence of S-9 mix. Moreover, orally administered compound 14d completely suppressed the growth of MCF-7 inoculated into nude mice, and the effect was more potent than that of compound 1. In addition to ER-positive breast cancer cells, compound 14d exhibited growth-inhibitory activity against a panel of human cancer cell lines including a part of ER-negative breast, endometrial, ovarian, and liver cancers. From these results, fluorine introduction to the putative metabolic positions of compound 1 was elucidated to be effective in the enhancement of the in vivo antitumor activity, probably due to the block of the metabolic deactivation.  相似文献   

6.
7.
BACKGROUND: The receptor (ER) for estrogen (E2) is routinely assayed as a marker to determine the feasibility of anti-hormone therapy against breast cancer because ER-positive (ER+) tumors are much more likely to respond to anti-hormone therapy than are ER-negative (ER-). However 40% of ER+ breast cancer patients do not respond to anti-hormone therapy. We suggest that this unpredictability of therapeutic responses lies in the current ER assays, which measure only an initial component of the E2-responsive pathway, and that the difference depends upon altered downstream processes. We propose a functional criterion that subclassifies breast cancers on the basis of specific binding of ER to its cognate DNA sequence, the estrogen response element (ERE). MATERIALS AND METHODS: ER was identified in breast cancer cell lines by immunofluorescence assay, Western blot analysis, identification of ER-specific mRNA, and by interaction of the ER-ERE complex with three different ER-specific antibodies. ER-ERE complex formation was measured by electrophoretic mobility shift assay (EMSA). Transactivation of the E2-responsive gene was studied by transfection of cells with fusion gene construct with the promoter-containing ERE sequence and assay of reporter gene activity in the cell extracts. RESULTS: The growth of ER+ T47D cells was sensitive to tamoxifen, ICI-182,780, and ethynyl estradiol (EE2), whereas another ER+ breast cancer cell line, 21 PT, was resistant to these compounds. The estrogen receptor (ER) in the nuclear extracts of MCF-7 and T47D demonstrated hormone-dependent interaction with the response element (ERE) and also downstream transactivation of the E2-responsive PS2 promoter. But in the 21 PT cell line that was designated as ER- on the basis of ligand-binding assay and was found to be ER+ by all the other ER assays, ER-ERE interaction and PS2 promoter transactivation were independent of hormone. CONCLUSIONS: On the basis of the downstream functional assay of ER interaction with ERE, ER+ breast tumor cells can be subclassified into two categories. The first is E2-dependent (ERd+) and these cells should respond to anti-hormone therapy. The second type of ER interacts with ERE independent of E2 (ERi+) and constitutively transactivates responsive genes. It is predicted that the latter type of breast cancers will not respond to antihormone therapy.  相似文献   

8.
The CCND1 gene, encoding the cell cycle regulatory protein cyclin D1, maps to chromosome 11q13, a locus that is amplified in about 13% of breast cancers. Because several studies have indicated a relationship between 11q13 amplification and markers of phenotype including estrogen receptor (ER) status, we tested the relationship between CCND1 and ER gene expression in 364 primary breast cancers using Northern blot analysis. Seventy-three % of samples were positive for ER mRNA, and cyclin D1 mRNA levels in the ER-positive group were significantly higher than those in the ER-negative group (P = 0.0001). When the samples were divided into quartiles of cyclin D1 expression, 58% of samples were ER positive in the lowest quartile and 87% in the highest quartile. The tumors expressing the highest levels of cyclin D1 (7%) were all ER positive. Furthermore, ER mRNA levels in the half with lower cyclin D1 mRNA were significantly less than in the half with higher cyclin D1 levels (P = 0.0001). Using simple regression analysis, there was a significant positive correlation between cyclin D1 and ER mRNA levels in the total population (P = 0.0001). This study demonstrates that cyclin D1 mRNA and ER mRNA are positively correlated in primary breast cancer, but the functional relationship between these genes remains to be elucidated.  相似文献   

9.
Overexpression of HER2 in estrogen receptor (ER)-positive human breast tumors has been associated with resistance to endocrine therapy. Here we investigated the effects of HER2 on expression of apoptotic pathways and modulation of tamoxifen-induced apoptosis in ER-positive MCF-7 breast cancer cells. We report that HER2 overexpression in MCF-7 cells is accompanied by up-regulation of antiapoptotic Bcl-2 and Bcl-XL proteins and suppression of tamoxifen-induced apoptosis. In addition, human tumor cell lines that are both ER positive and overexpress HER2 also express enhanced levels of Bcl-2 compared to cells that are either ER positive or overexpress HER2 alone. Our findings suggest that possible deregulation of antiapoptotic Bcl-2 and Bcl-XL may be associated with the enhanced survival of HER2-overexpressing and ER-positive breast cancer cells treated with antiestrogens.  相似文献   

10.
The expression and stability of the estrogen receptor (ER) is the result of a complex process that is modulated by estrogens and antiestrogens. Regulation of the steady-state ER mRNA and protein levels in breast cancer cells appears to be the result of either of two distinct regulatory mechanisms. Estrogen exposure causes a rapid down-regulation of the steady-state level of ER mRNA and protein in model I regulation, as exemplified by the MCF-7:WS8 cell line. Conversely, in model II regulation, as observed in the T47D:A18 cell line, estrogen exposure causes an increase in the steady-state ER mRNA level and a maintenance of the ER protein level. In both these cell lines, the nonsteroidal antiestrogen 4-hydroxytamoxifen has little effect on the mRNA level but causes a net accumulation of the ER protein over time. In contrast, the pure antiestrogen ICI 182,780 causes a dramatic reduction of the ER protein in both the MCF-7:WS8 and T47D:A18 cell lines. This loss has little effect upon the ER mRNA level in the MCF-7:WS8 cells but leads to a decline in the ER mRNA in the T47D:Al8 cells. The estrogen-independent MCF-7:2A cell line, which has adapted to growth in estrogen free media, expresses two forms of the ER, a wild-type Mr66,000 ER and a mutant Mr77,000 ER (ER77). ER77 is the product of a genomic rearrangement resulting in a tandem duplication of exons 6 and 7 (J. J. Pink et al, Nucleic Acids Res., 24:962-969,1996). This exon duplication has abolished ligand binding by this protein. Here we demonstrate that the loss of ligand binding has eliminated the effects of 4-OHT and ICI 182,780 on the steady-state ER77 protein level. However, in the MCF-7:2A cells, antiestrogens affect the wild-type ER protein in the same manner as observed in the MCF-7:WS8 and T47D:A18 cells. Estrogen regulates the ER mRNA and wild-type ER and ER77 proteins in the MCF-7:2A cells in the same manner as observed in the MCF-7:WS8 cells. Interestingly, treatment of the MCF-7:2A cells with ICI 182,780 causes a slight increase in ER mRNA, which is reflected in a net increase in the ER77 protein but a dramatic decrease in the wild-type ER. The models presented here describe the response of two human breast cancer cell lines in short-term studies. These distinct regulation pathways are predictive of the response of these cell lines to long-term estrogen deprivation. This study illustrates two alternative regulation pathways that are present in ER-positive, estrogen-dependent breast cancer cells. This variable response highlights the diversity of responses potentially present in the heterogeneous cell populations of clinically observed breast cancer.  相似文献   

11.
Breast cancers require the presence of estrogens for the maintenance of growth at some time in the course of their development, as does normal breast tissue. Sulfation is an important process in the metabolism and inactivation of steroids, including estrogens, because the addition of the charged sulfonate group prevents the binding of the steroid to its receptor. Also, many of the therapeutic and chemopreventive agents used in the treatment of breast cancer are substrates for the sulfotransferases (STs). The activity and expression of four cytosolic STs, which are the human phenol-sulfating and monoamine-sulfating forms of phenol ST (PST), dehydroepiandrosterone ST, and estrogen ST (hEST), were assayed in normal breast cells and in breast cancer cell lines. ST activities and immunoreactivities were assayed in the estrogen receptor-positive human breast cancer cell lines ZR-75-1, T-47D and MCF-7; in the estrogen receptor-negative breast cancer cell lines BT-20, MDA-MB-468, and MDA-MB-231; and in normal human mammary epithelial cells. The PSTs were the most highly expressed ST activities in the breast cancer cell lines, although the levels of activity varied significantly. ZR-75-1 and BT-20 cells possessed the highest levels of activity of the human phenol-sulfating form of PST. The breast cancer cell lines showed only trace levels of dehydroepiandrosterone ST and hEST activities. In contrast, hEST was the only ST detectable in human mammary epithelial cells. Understanding the regulation of ST activity in these breast cancer and normal breast cell lines will improve our knowledge of the role of sulfation in breast cancer and provide a model with which to study the mechanism of action of estrogens in mammary cells.  相似文献   

12.
13.
Calmodulin (CaM) has been reported to have affinity for the estrogen receptor (ER). Observations reported here reveal a direct physical interaction between purified CaM and ER. This direct ER-CaM interaction may be an initial event preceding the assembly of ER plus auxiliary proteins into the active ER complex with its DNA motif, the estrogen response element. We demonstrate that CaM is an integral component of this complex by using a system reconstituted from purified ER and nuclear extract from ER-negative breast cancer cells and also with ER-depleted nuclear extract of an ER-positive breast cancer cell line. Although CaM is essential for formation of this complex, it is not sufficient, suggesting roles also of auxiliary proteins. CaM also is functionally required for activation of an ER-responsive promoter, in the 17beta-estradiol-ER pathway of hormone action and regulation of 17beta-estradiol-responsive gene expression that is associated with proliferation of mammary epithelial cells.  相似文献   

14.
15.
Epidemiologic studies suggest that ovarian hormones contribute to the development of breast cancer at all stages. Early menopause and premenopausal obesity reduces the risk while postmenopausal obesity and menopausal estrogen replacement therapy increases the risk. Combined oral contraceptives and Depo-Provera do not reduce the risk. It appears that estrogens and progestogens act through and with proto-oncogenes and growth factors to affect breast cell proliferation and breast cancer etiology. Animal studies suggest that estrogen causes interlobular ductal cell division and progesterone causes increased terminal duct lobular unit cell division in the luteal phase. Most breast carcinomas originate from terminal duct lobular unit cells. During pregnancy, these cells fully multiply. Their reproduction is also increased during the luteal phase. Yet, there is considerable interpersonal variation. No studies examining breast cell division have compared cell division rates with serum hormone concentrations, however. The peak of mitosis occurs about 3 days before breast cell death in the late luteal and very early follicular phases. Other research suggests that breast stem cell proliferation is linked to breast cancer development. Endocrine therapy reduces mitotic activity, indicating the estrogen and progesterone receptor content of breast cancers. Hormone-dependent breast cancer cell lines are all estrogen-dependent. Progesterone can block the estrogen-dependent cell lines which act like endometrial cells. The results of the various breast cell proliferation studies in relation to breast cancer are unclear and research identifying a molecular explanation would help in understanding the different findings.  相似文献   

16.
In human breast cancer, progression to a more malignant phenotype is often accompanied by decreased expression of estrogen receptor (ER) and increased expression of epidermal growth factor receptor (EGFR). Higher levels of this receptor tyrosine kinase are found in tumors lacking ER, and a quantitative, inverse relationship exists between the level of ER and EGFR mRNA in human breast cell lines. Antisense ER (ASER) RNA was used to evaluate the consequence of decreased ER expression in breast cancer cells, specifically to determine whether ER is involved in the regulation of EGFR gene expression. ER-positive MCF-7 human breast cancer cells were transfected with ASER, and clones constitutively expressing ASER RNA had decreased ER and up to a 3-fold increase in the expression of EGFR mRNA. To confirm that this observation was a direct consequence of ASER expression, a metal-inducible ASER expression construct was transfected into MCF-7 cells, and transfected clones were isolated and characterized. Northern analysis revealed an induction of ASER RNA within 1 h of the addition of zinc, which was followed by a 4-fold increase in EGFR mRNA levels, maximal at 6-12 h. The basal level of expression of the glucocorticoid receptor is also inversely related to that of ER among breast cancer cell lines, but neither constitutive nor inducible expression of ASER affected the expression of glucocorticoid receptor. These data support the hypothesis that the level of expression of ER specifically influences the expression of EGFR in human breast cancer cells and provides a potential link between loss of steroid sensitivity and the acquisition of autonomous growth.  相似文献   

17.
A positive association between postmenopausal serum levels of total estradiol, percentage of free estradiol, and percentage of estradiol not bound to sex hormone-binding globulin (SHBG) and breast cancer risk was recently reported by the New York University Women's Health Study (P. Toniolo et al., J. Natl. Cancer Inst., 87: 190-197, 1995). Data from this prospective study are used to assess whether the observed associations differ according to estrogen receptor (ER) status of the tumor. Between 1985 and 1991, 7063 postmenopausal women donated blood and completed questionnaires at a large breast cancer screening clinic in New York City. Before 1991, 130 cases of first primary breast cancer were identified by active follow-up of the cohort. For each case, two controls were selected, matching the case on age at first blood donation and length of storage of specimens. Biochemical analyses were performed on sera that had been stored at -80 degrees since sampling. ER information was abstracted from pathology reports. Separate statistical analyses were conducted of ER-positive, ER-negative, and ER-unknown groups (53, 23, and 54 matched sets, respectively). In each of the 3 groups, the mean estradiol and the mean percentage of free estradiol were greater (21-28% and 6-7%, respectively) in cases than in controls. Conversely, the mean percentage of estradiol bound to SHBG was 9-12% lower in cases than in controls. The logistic regression coefficients measuring the strength of the association between estradiol and its free and SHBG-bound fractions and breast cancer risk were similar in the ER-positive, ER-negative, and ER-unknown groups. These data suggest that in postmenopausal women, the association of endogenous estrogens with breast cancer risk is independent of the ER status of the tumor. This result is more compatible with the hypothesis of a progression from ER-positive to ER negative tumors than with the hypothesis that ER status identifies two distinct types of breast cancer.  相似文献   

18.
OK-432 (picibanil), a streptococcal preparation, has a strong biological response modifier (BRM) function and is expected to produce clinical improvement and prolongation of survival in treated cancer patients in Japan. We were interested in whether OK-432 augments estrogen receptor (ER) levels in breast cancer. To investigate the effect of the BRMs on cellular growth and the characteristics of ER and progesterone receptors (PgR) in the human breast cancer cell line MCF-7, we used OK-432, Krestin (PSK), a protein-bound polysaccharide extracted from Coriolus versicolor, and lentinan, a fungal branched (1...3)-beta-D-glycan. OK432 and PSK dose dependently inhibited DNA synthesis of MCF-7 cells, and the 50% inhibitory concentrations of OK-432 and PSK were 1.2 KE (klinische Einheit, clinical unit)/ml and 200 micrograms/ml, respectively. Lentinan showed no direct anticancer effect in vitro. We found that OK-432 induced a 2-fold increase in ER levels in MCF-7 cells at 0.005 KE/ml, but not in PgR. Lentinan and low-dose PSK did not change ER or PgR levels, but high-dose PSK decreased ER and PgR. We also studied the combined effect of OK-432 and antiestrogens, tamoxifen (TAM) and DP-TAT-59. The combined treatment with OK-432 and TAM showed an additive inhibitory effect on MCF-7 cells. These results suggest that OK-432 may augment the therapeutic effect of TAM in breast cancer.  相似文献   

19.
20.
The treatment of breast cancer has changed significantly over the last 20 years. It is now believed that breast cancer usually spreads early and that removal of neither lymph nodes nor the breast prolongs survival, although these procedures do improve local control of the disease. Involvement of lymph nodes is prognostically important as a reflection of the body's defenses against spreading cancer cells. Systemic adjuvant therapy with tamoxifen improves survival in estrogen receptor (ER)-positive women and chemotherapy does so in ER-positive or negative women. This article gives an overview of the evolution in the treatment of breast cancer over the past 20 years, and describes the Breast Cancer Prevention Trial (BCPT) and several trials of adjuvant therapy which are now being conducted by the National Surgical Adjuvant Breast Project (NSABP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号