首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: In this study, visible‐light‐derived photocatalytic activity of metal‐doped titanium dioxide nanosphere (TS) stacking layers, prepared by chemical vapor deposition (CVD), was investigated. The as‐grown TS spheres, having an average diameter of 100–300 nm, formed a layer‐by‐layer stacking layer on a glass substrate. The crystalline structures of the TS samples were of anatase‐type. RESULTS: Ultraviolet (UV) absorption confirmed that metallic doping (i.e. Co and Ni) shifted the light absorption of the spheres to the visible‐light region. With increasing dopant density, the optical band gap of the nanospheres became narrower, e.g. the smallest band gap of Co‐doped TS was 2.61 eV. Both Ni‐ and Co‐doped TS catalysts showed a photocatalytic capability in decomposing organic dyes under visible irradiation. In comparison, Co‐doped TiO2 catalyst not only displays the adsorption capacity, but also the photocatalytic activity higher than the N‐doped TiO2 catalyst. CONCLUSION: This result can be attributed to the fact that the narrower band gap easily generates electron–hole pairs over the TS catalysts under visible irradiation, thus, leading to the higher photocatalytic activity. Accordingly, this study shed some light on the one‐step efficient CVD approach to synthesize metal‐doped TS catalysts for decomposing dye compounds in aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Silver and zirconium co‐doped and mono‐doped titania nanocomposites were synthesized and deposited onto polyacrylonitrile fibers via sol–gel dip‐coating method. The resulted coated‐fibers were characterized by X‐ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, thermogravimetric analysis, and BET surface area measurement. Photocatalytic activity of the TiO2‐coated and TiO2‐doped coated fibers were determined by photomineralization of methylene blue and Eosin Y under UV–vis light. The progress of photodegradation of dyes was monitored by diffuse reflectance spectroscopy. The XRD results of samples indicate that the TiO2, Ag‐TiO2, Zr‐TiO2, and Ag‐Zr‐TiO2 consist of anatase phase. All samples demonstrated photo‐assisted self‐cleaning properties when exposed to UV–vis irradiation. Evaluated by decomposing dyes, photocatalytic activity of Ag–Zr co‐doped TiO2 coated fiber was obviously higher than that of pure TiO2 and mono‐doped TiO2. Our results showed that the synergistic action between the silver and zirconium species in the Ag‐Zr TiO2 nanocomposite is due to both the structural and electronic properties of the photoactive anatase phase. These results clearly indicate that modification of semiconductor photocatalyst by co‐doping process is an effective method for increasing the photocatalytic activity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
BACKGROUND: This research investigated the effect of platinum (Pt) on the reactivity of tungsten oxide (WO3) for the visible light photocatalytic oxidation of dyes. RESULTS: Nanocrystalline tungsten oxide (WO3) photocatalysts were synthesised by a sol‐gel process and employed for the photocatalytic degradation of Methyl Orange under visible light. For comparison commercial bulk WO3 materials were also studied for the same reaction. These materials were fully characterised using X‐ray diffraction (XRD), UV‐visible diffuse reflection spectroscopy and transmission electron microscopy (TEM). The photocatalytic oxidation of iso‐propanol was used as a model reaction to follow the concomitant reduction of molecular oxygen. No reactions occured in the absence of platinum, which is an essential co‐catalyst for the multi‐electron reduction of oxygen. The platinised WO3 catalysts were stable for multiple oxidation–reduction cycles. The results from the catalytic activity measurements showed that platinised nanocrystalline WO3 is a superior oxidation photocatalyst when compared with bulk WO3. Methyl Orange was completely decolourised in 4 h. CONCLUSIONS: The enhanced performance of nanocrystalline Pt‐WO3 is attributed to improved charge separation in the nanosized photocatalyst. Platinum is an essential co‐catalyst to reduce oxygen. This photocatalyst could be applied to the treatment of organic pollutants in wastewater, with the advantage of using visible light compared with the widely studied TiO2, which requires UV light. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Porous ultrahigh‐molecular‐weight polyethylene (UHMWPE)‐based composites filled with surface‐modified Ce‐doped TiO2 nanoparticles (Ce–TiO2/UHMWPE) were prepared by template dissolution. The composites were characterized by Fourier transform infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, diffuse reflectance spectra, and scanning electron microscopy); the photocatalytic activity was also evaluated by the decomposition of methyl orange under UV exposure. The results demonstrate that the severe aggregation of Ce–TiO2 nanoparticles could be reduced by surface modification via a silane coupling agent (KH570). The Ce–TiO2/UHMWPE porous composites exhibited a uniform pore size. Doping with Ce4+ effectively extended the spectral response from the UV to the visible region and enhanced the surface hydroxyl groups of the TiO2 attached to the matrix. With a degradation rate of 85.3%, the 1.5 vol % Ce–TiO2/UHMWPE sample showed the best photocatalytic activity. The excellent permeability of the porous composites is encouraging for their possible use in wastewater treatment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The UV-induced photocatalytic degradation of two azo dyes, Methyl Red and Methyl Orange, has been carried out in aqueous media in the presence of oleic acid (OLEA)- and tri-n-octylphosphine oxide (TOPO)-capped anatase TiO2 nanocrystal powders (mean particle size: 6 nm) deposited onto a quartz substrate. The progress of photodegradation was followed by combining UV–vis absorption measurements with HPLC–MS analysis. The abatement efficiency for the two organic compounds was compared with that obtained with commercial TiO2 P25 Degussa by evaluating a few significant variables, such as the dye chemical structure, pH of the solution, and catalyst surface status. Identification of several by-products by HPLC–MS analysis has allowed to propose a reasonable degradation pathway for both target molecules. Significantly, although all titania catalysts were effective in removing both parent dyes and their related derivatives, the degradation rate by the OLEA-capped TiO2 nanocrystals was double as that obtained with both its TOPO-capped analogous and TiO2 P25 Degussa. It is suggested that efficient catalysis strictly depends on microscopic mechanisms that occur at the catalyst surface, basically involving specific dye adsorption and local density of terminal OH moieties.  相似文献   

6.
Micrometer‐sized structures consisting of TiO2 nanoparticles were prepared using the sol–gel technique in combination with the structure‐directing agent triethanolamine (TEA). The interaction of the TEA with the hydrolyzed sol–gel products led to the formation of TEA titanate complexes, which then enabled the assembly of sol–gel‐precipitated nanosized powders. A subsequent thermal treatment of these powders resulted in the formation of micrometer‐sized structures consisting of TiO2 anatase and rutile nanoparticles. To characterize the prepared powders, FTIR spectroscopy, XRD analysis, the Brunauer‐Emmett‐Teller method (sBET), UV–Vis spectrometry and electron microscopy (FE‐SEM, and TEM) were employed. The photocatalytic degradation of the azo dye known as methylene blue was monitored under UV and Vis irradiation and showed that the micrometer‐sized structures consisting of TiO2 nanoparticles exhibited a similar photocatalytic activity to submicrometer‐sized structures consisting of TiO2 nanoparticles prepared without TEA.  相似文献   

7.
《分离科学与技术》2012,47(7):1521-1534
Abstract

Aqueous solutions of Acid Blue 74, Acid Orange 10, and Acid Violet 19 were subjected to Fenton/Fenton‐like oxidation and its combination with lime coagulation. The analysis indicated no dependence of chemical oxidation efficacy on dye concentration in the range of 0.1–1 g L?1. Complete or nearly complete (higher than 95%) color removal of all treated samples was observed. Dye:H2O2 weight ratio of 1∶2 proved optimal for treatment of all dye solutions by means of Fenton/Fenton‐like oxidation. Moderate doses of hydrogen peroxide led to the improvement of biodegradability of dye solutions. No formation of any toxic intermediates during the oxidation of Acid Orange 10 and Acid Violet 19 was detected. Only a slight toxicity increase was observed after Acid Blue 74 degradation by Fenton chemistry. H2O2/Fe3+ system with pH adjusted to 3 proved the most effective oxidation process. The combination of Fenton chemistry and subsequent lime coagulation was the most feasible treatment method of removing COD and UV254 and UVmax absorbance of dye solutions. Combined oxidation and coagulation was more effective for Acid Blue 74 and Acid Orange 10 elimination than for Acid Violet 19.  相似文献   

8.
Single‐ and double‐walled anatase TiO2 nanovesicles have been, respectively, prepared by a template‐free hydrothermal treatment of Ti(SO4)2 with H2O2 and urea. Photocatalytic degradation of Rhodamine B indicates that double‐walled TiO2 nanovesicles have an initial lower but a final higher photocatalytic efficiency than single‐walled ones. All nanovesicles have significantly lower performance than commercially available P25 TiO2. The enhanced capacity for UV light absorption and· OH radicals production, large specific surface area, and unique hierarchical hollow architectures contribute to the enhanced photocatalytic activity and improved feasibility of anatase TiO2 nanovesicles for engineering applications. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1478–1482, 2015  相似文献   

9.
The solvothermal synthesis of multiwalled TiO2 nanotubes (MWTNTs) with the reaction of titanium dioxide (TiO2) nanoparticles and sodium hydroxide aqueous solution at moderate temperature is presented. The kinetic and isotherm studies were investigated for Orange II removal mechanism. MWTNTs were prepared in length 70–200 nm, average diameter 4–10 nm, and inter-shell spacing 0.78 nm. Different characterizations were performed to confirm anatase and mesoporous structure of MWTNTs. An improvement in properties as compared to commercial TiO2 was observed; specific surface area 244.81 m2/g and band gap 3.0 eV. An excellent photocatalytic activity for Orange II removal was exhibited using synthesized MWTNTs.  相似文献   

10.
A phase transformation of micron‐sized TiO2 powder from anatase to rutile was attempted by heat‐treatment in order to generate a new mixed crystal TiO2 with high associated photocatalytic activity. Heat‐treated micron‐sized TiO2 powders at different transition stages were characterized by X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM) methods. The tests of photocatalytic activity of the heat‐treated micron‐sized TiO2 powders were conducted by the photocatalytic degradation of Rhodamine B and Acid Red B under visible light irradiation. The results indicate that mixed crystal TiO2 photocatalyst heat‐treated at 400 °C for 60 min shows the highest photocatalytic activity. It can effectively decompose the Rhodamine B and Acid Red B in aqueous solution after 6 h visible light irradiation. A remarkable improvement in photocatalytic activity of TiO2 is caused by the formation of combined rutile–anatase phases and separation of photogenerated electron–hole pairs. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
In the present study rare earth doped (Ln3+–TiO2, Ln = La, Ce and Nd) TiO2 nanofibers were prepared by the sol–gel electrospinning method and characterized by XRD, SEM, EDX, TEM, and UV-DRS. The photocatalytic activity of the samples was evaluated by Rhodamine 6G (R6G) dye degradation under UV light irradiation. XRD analysis showed that all the synthesized pure and doped titania nanofibers contain pure anatase phase at 500 °C but at 700 °C it shows both anatase and rutile phase. XRD result also shows that Ln3+-doped titania probably inhibits the phase transformation. The diameter of nanofibers for all samples ranges from 200 to 700 nm. It was also observed that the presence of rare-earth oxides in the host TiO2 could decrease the band gap and accelerate the separation of photogenerated electron–hole pairs, which eventually led to higher photocatalytic activity. To sum up, our study demonstrates that Ln3+-doped TiO2 samples exhibit higher photocatalytic activity than pure TiO2 whereas Nd3+-doped TiO2 catalyst showed the highest photocatalytic activity among the rare earth doped samples.  相似文献   

12.
The aim of this work was to obtain anatase nano‐TiO2 by the sol–gel method at room temperature and to achieve self‐cleaning Bombyx mori silk fabrics. Nano‐TiO2 sols based on an aqueous system and an ethanol system were prepared separately by the sol–gel method using tetrabutyl orthotitanate as a precursor at room temperature. Particle size analyses showed that nano‐TiO2 particles in an aqueous system were much bigger and more variant than those in ethanol. X‐ray diffraction patterns revealed a pure anatase phase of nano‐TiO2 in an aqueous system. Crystalline transformation of TiO2 from anatase to rutile by photoradiation at ambient temperature was also proved. Thermogravimetric and differential scanning calorimetric analyses confirmed the phase transformation of nano‐TiO2. A scanning electron microscope equipped with an energy‐dispersive spectrometer was used to investigate the surface morphology and elements of Bombyx mori silk fabrics. The contact angles with water, the kinetics of photocatalytic degradation of Methylene Blue, and decontamination of red‐wine‐stained fabrics under ultraviolet radiation demonstrated that the fabrics had good self‐cleaning properties and photoinduced hydrophilicity.  相似文献   

13.
The process of TiO2/UV photocatalytic discoloration of wastewaters containing organic dyes is influenced by a number of variables. In this paper, the effects of some of these parameters, i.e., mass of catalyst, initial dye concentration, and pH, were related to the structural nature of the dyes investigated, azo and anthraquinone dyes, two families that are representative of about 75 % of the dyes marketed nowadays. Both bibliographical and own experimental data were used to analyze and discuss the photocatalytic discoloration in terms of dye structure and degradation pathways. It is shown that azo dyes (Methyl Orange, Metanil Yellow, Acid Orange 7, and Reactive Red 120) are more easily discolored than Reactive Blue 19 (anthraquinone dye), due to the higher molecular stability of the latter. It is also shown that azo dye discoloration is more influenced by the initial dye concentration, whereas recalcitrant anthraquinone dyes (Reactive Blue 19) mainly demand for basic pH values to generate enough OH radicals. Concerning TiO2 loading, both the bibliographical and current research data showed no effect of this variable in the experimental range analyzed.  相似文献   

14.
A simple route has been developed to prepare well‐aligned TiO2 nanotube arrays, which is based on outward coating of TiO2 and inward etching of Cu(OH)2 nanorod templates. Effects of annealing temperature and time on the crystal size and crystallinity of TiO2 nanotube arrays and photocatalytic activities of TiO2 nanotube arrays for degradation of Rhodamine B in aqueous solution have been investigated. The results indicate that the TiO2 nanotube arrays annealed at 500°C for 2 h possessed an enhanced photocatalytic activity in comparison with the TiO2 nanotube arrays without post heating and commercial anatase TiO2 nanoparticle film and presented a good life cycle performance. Scale‐up of the process has also been demonstrated. Our work opens a new avenue to fabricate free‐standing TiO2 nanotube arrays and demonstrates an excellent photocatalytic performance of the anatase TiO2 nanotube arrays for wastewater treatment. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2134–2144, 2013  相似文献   

15.
The effect of support type on synthesis gas production using Co‐based catalysts supported over TiO2‐P25, Al2O3, SiO2, and CeO2 was investigated. The catalysts were prepared by the incipient wet impregnation method and characterized by various techniques for comparison. Experiments were performed in a micro tubular reactor. The results revealed that all Co‐supported catalysts produced synthesis gas ratios of 1 and below and, thus, proved to be well‐suited for methanol and Fischer‐Tropsch syntheses. Co catalysts supported over TiO2‐P25 and Al2O3 provided better synthesis gas ratios and stability performances. The promotion of a Co/TiO2‐P25 catalyst with Ce had a substantial influence on its catalytic activity and the amount of carbon deposit. A Ce‐promoted catalyst diminished markedly the extent of carbon deposition and thus boosted the performance towards better activity and stability.  相似文献   

16.
In this study, TiO2‐loaded wooden‐activated carbon fibers (TiO2/WACFs) were prepared by sol–gel method. TiO2/WACFs were detected by scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The results showed that TiO2 was deposited on almost each WCAF with a coating thickness. All the TiO2 films on the surface of WACFs were composed of anatase with high photocatalytic property. The characteristic adsorption peaks of nano‐TiO2 emerged at 1,402 and 471 cm−1 on the infrared spectrum of TiO2/WACFs. It was also found that Ti was in the binding state of Ti4+ (TiO2) in the TiO2/WACFs. As the calcination temperature increased, the content of elements Ti and Ti O bond of lattice oxygen on the surface of TiO2/WACFs increased and then decreased, but the loaded nano‐TiO2 did not affect the formation of graphite structure of WACFs. It is suggested that TiO2/WACFs obtained at 450°C have the best photocatalytic property. POLYM. COMPOS., 36:62–68, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
Anatase TiO2‐modified flower‐like Bi2WO6 nanostructures were prepared by a simple hydrothermal reaction followed by layer‐by‐layer deposition and calcination. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic pollutant under UV‐Vis light irradiation. The experiment results showed that the photocatalytic activity of the hybrid increases first and then decreases with increasing loading amount of TiO2. The hybrid coated with four layers of TiO2 (containing 20 wt‐% TiO2) showed the highest photocatalytic activity, which is 10.45 and 3.20 times higher than that of pure Bi2WO6 and TiO2, respectively. The improved photocatalytic performance of TiO2‐modified Bi2WO6 nanostructures could be ascribed to the improved light‐harvesting ability, efficient photo‐generated electron‐hole separation, and enhanced adsorption of the dye. This work may shed light on the design of complex architectures and the exploitation of their potential applications.  相似文献   

18.
Alkaline‐earth metal Ca and N codoped TiO2 sheets with exposed {001} facets were obtained through a one‐step hydrothermal process. The codoped TiO2 appears as microsheets with length of 1–2 μm and thickness of 100–200 nm. The X‐ray diffractometer and X‐ray photoelectron spectroscopy results confirm that Ca and N codoped TiO2 has higher crystallinity than N‐doped TiO2, as well Ca, N atoms were successfully codoped into TiO2 as interstitial Ca and interstitial N or an O–Ti–N structure, respectively. Compared with N monodoped, further alkaline‐earth Ca codoped has little influence on the energy bands of TiO2 except slightly elevating the conduction band edge at a value of 0.02 eV. The hydroxyl radicals (?OH) producing and photocatalytic experiment shows that Ca and N codoped can effectively decrease the generation of recombination centers, and enhance separation efficiency of photo‐induced electrons and holes as well as the photocatalytic activity of TiO2. The codoped photocatalyst has the highest photocatalytic activity when Ca doped ratio reach 0.48%. Excess Ca doped will weaken the crystallization of anatase TiO2, form charge center, produce new recombination centers and finally reduce the photocatalytic activity of TiO2.  相似文献   

19.
TiO2 microspheres were successfully synthesised by simple solution phase method by using various amount of titanium butoxide as precursor. The prepared TiO2 were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance absorption spectra (UV-DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XRD analysis revealed that the as-synthesized TiO2 microsphere poses an anatase phase. The photocatalytic degradation experiments were carried out with three different dyes, such as methylene blue, brilliant black, reactive red-120 for four hours under UV light irradiation. The results show that TiO2 morphology had great influence on photocatalytic degradation of organic dyes. The experimental results of dye mineralization indicated the concentration was reduced by a high portion of up to 99% within 4 hours. On the basis of various characterization of the photocatalysts, the reactions involved to explain the photocatalytic activity enhancement due to the concentration of titanium butoxide and morphology include a better separation of photogenerated charge carriers and improved oxygen reduction inducing a higher extent of degradation of aromatics.  相似文献   

20.
The structure, physical characteristics and photocatalytic selective oxidation properties of nanometer‐size TiO2 particles produced by a sol–gel method were studied by X‐ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), X‐ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) and photocatalytic selective oxidation measurements. Analysis of the XRD results shows that sol–gel‐produced TiO2 nanoparticles have the anatase structure at annealing temperatures ≤973 K, that the rutile structure begins to emerge at annealing temperatures ≥973 K and the particles have the pure rutile structure at 1023 K. DRS indicates that the obtained TiO2 nanoparticles exhibit a blue shift with decreasing crystallite size. Analysis of the XPS results shows that the TiO2 nanoparticles have a lot of oxygen vacancies. The EPR spectrum of TiO2 at 77 K is composed of a strong isotropic EPR Surface‐Ti3+ signal(I) at g = 1.926 and a weak broad Bulk‐Ti3+ signal (II) at g = 1.987. Quantitative EPR indicates that both signals show a size and temperature dependence. Photocatalytic oxidation of cyclohexane into cyclohexanol with high selectivity and activity has been obtained by activation of molecular oxygen over sol–gel‐produced TiO2 nanoparticles under mild conditions in dry solvent, which reveals that the quantum size effect and surface state effect of nanoparticles are key points for governing the selective photocatalytic reaction. The photocatalytic oxidation mechanism under dry solvent is different from that in aqueous solutions. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号