首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

2.
The identification of proteins in complex mixtures is most useful when quantitative information is also obtained. We describe a new type of protein tagging reagent called the visible isotope-coded affinity tag (VICAT) which allows the absolute amount of a target protein or proteins to be quantified in a complex biological sample such as a eukaryotic cell lysate. VICAT reagents tag thiol groups of cysteines or thioacetylated amino groups and introduce into the tryptic peptide a biotin affinity handle, a visible moiety for tracking the chromatographic location of the target peptide by a method other than mass spectrometry, a photocleavable linker for removing a portion of the tag, and an isotope tag for distinguishing sample and internal standard peptides. We demonstrate the use of VICAT reagents together with isoelectric focusing of peptides on an immobilized gel strip followed by combined micro-liquid chromatography/electrospray ionization mass spectrometry operating in selected reaction monitoring mode to determine the absolute abundance of a specific protein, human group V phospholipase A(2), in eukaryotic cell lysates. It is found that human lung macrophages contain 66 fmol of this protein per 100 microg of cell protein. Western blot analysis of human group V phospholipase A(2) in macrophages gave inconclusive data. VICAT reagents should be useful for numerous applications including the analysis of candidate disease markers in complex mixtures such as serum.  相似文献   

3.
Phytoestrogens are a group of polyphenolic plant metabolites that can induce biological responses. Their bioactivity is based on their similarity to 17beta-estradiol and their ability to bind to the beta-estrogen receptor. Although epidemiological data are inconclusive, phytoestrogens are considered to be beneficial for a variety of conditions, for example, hormone-related cancers like breast and prostate cancer. To investigate the biological effects of these compounds and to assess the exposure of larger cohorts or the general public, reliable data on the phytoestrogen content of food is necessary. Previously, food analysis for phytoestrogens was performed using either HPLC-UV or GC/MS. Here, we describe the development of the first generic method for the analysis of phytoestrogens in food, using automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. The presented method shows a good reproducibility and can be easily adapted to other phytoestrogens if required.  相似文献   

4.
The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF MS and MS/MS. The proposed tags, commercially available fluorescent derivatives of coumarin, can be advantageous for peptide analysis in both MS and MS/MS modes. This paper, part 1, will focus on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. Labeling peptides with tags containing the coumarin core was found to enhance the intensities of peptide peaks (in some cases over 40-fold) in MALDI-TOF MS using CHCA and 2,5-DHAP matrixes. The signal enhancement was found to be peptide- and matrix-dependent, being the most pronounced for hydrophilic peptides. No correlation was found between the UV absorptivity of the tags at the excitation wavelengths typical for UV-MALDI and the magnitude of the signal enhancement. Interestingly, peptides labeled with Alexa Fluor 350, a coumarin derivative containing a sulfo group (i.e., bearing strong negative charge), showed a 5-15-fold increase in intensity of MALDI MS signal in the positive ion mode, relative to the underivatized peptides, when 2,5-DHAP was used as the matrix. The Alexa Fluor 350 tag yielded a significantly higher signal relative to that for the CAF tag, likely due to the increased hydrophobicity of the coumarin structure. With 2,5-DHB, a decrease of MALDI MS signal was observed for all coumarin-labeled peptides, again relative to the unlabeled species. These findings support the hypothesis that derivatization with coumarin, a relatively hydrophobic structure, improves incorporation of hydrophilic peptides into hydrophobic MALDI matrixes, such as CHCA and 2,5-DHAP.  相似文献   

5.
Methods for the absolute quantification of a membrane protein are described using isotopically labeled or unlabeled synthetic peptides as standards. Synthetic peptides are designed to mimic peptides that are cleaved from target analyte proteins by proteolytic or chemical digestion, and the peptides selected serve as standards for quantification by LC/MS/MS on a triple quadrupole mass spectrometer. The technique is complementary to relative quantification techniques in widespread use by providing absolute quantitation of selected targets with greater sensitivity, dynamic range, and precision. Proteins that are found to be of interest by global proteome searches can be selected as targets for quantitation by the present method. This method has a much shorter analytical cycle time (minutes versus hours for the global proteome experiments), making it well suited for high-throughput environments. The present approach using synthetic peptides as standards, in conjunction with proteolytic or chemical cleavage of target proteins, allows mass spectrometry to be used as a highly selective detector for providing absolute quantification of proteins for which no standards are available. We demonstrate that quantification is simple and reliable for the integral membrane protein rhodopsin with reasonable recoveries for replicate experiments using low-micromolar solutions of rhodopsin from rod outer segments.  相似文献   

6.
Liu X  Lovell MA  Lynn BC 《Analytical chemistry》2005,77(18):5982-5989
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde and is known to react with DNA forming exocyclic acrolein-deoxyguanosine adducts (Acro-dG). These aldehyde-DNA lesions may play a role in mutagenesis, carcinogenesis, and neurodegenerative diseases. In the present work, we described the development and evaluation of a highly sensitive and selective capillary liquid chromatography nanoelectrospray isotope dilution tandem mass spectrometry method for quantitatively analyzing Acro-dG in DNA hydrolysates. This was achieved by applying a stable isotope-labeled analogue Acro-dG-13C10,15N5 as an internal standard to the DNA to be analyzed and then hydrolyzing the DNA enzymatically to nucleosides. The acrolein-modified nucleosides were separated from normal nucleosides by capillary liquid chromatography and quantified by a high-capacity ion trap mass spectrometer in the MS/MS mode. The developed method achieved attomole-level sensitivity (limit of detection was 10 fg, 31 amol on column) for detection of pure Acro-dG adduct standards. The limit of quantification of Acro-dG adducts obtained in 10 mug of DNA hydrolysates was 1.5 fmol, which corresponded to 50 adducts/10(9) normal nucleosides. Application of this method to the analysis of Acro-dG adducts in acrolein (10-fold)-treated calf thymus DNA showed approximately 830 lesion/10(6) DNA nucleosides using as low as 50 ng of DNA. Application of this method to DNA samples (1-2 mug) isolated from brain tissues from Alzheimer's disease subjects and age-matched controls demonstrated 2800-5100 Acro-dG adducts/10(9) DNA nucleosides. Statistically significant differences (P < 0.05) in levels of Acro-dG between AD subjects and controls were observed in DNA isolated from the hippocampus/parahippocampal gyrus.  相似文献   

7.
The bioanalysis of plasma samples generated from in vivo studies of therapeutic proteins is of increasing interesting in the biopharmaceutical industry. The conventional ELISA approach has a long assay development time which can limit use in the early discovery and development of protein-based drugs. In this study, an LC-MS/MS bioassay was developed for the quantification of somatropin and a therapeutic human monoclonal antibody. The assay used bovine fetuin as an internal standard and a two-dimensional solid-phase extraction for the cleanup of the plasma digest. Sample extracts were resolved on an analytical size column using a 6 min LC gradient and analyzed using a triple-quadruple mass spectrometer. The linearity of the assay for somatropin was established from 1 to 1000 microg/mL with accuracy and precision within 15%. This LC-MS approach was also applied to a rat pharmacokinetic study of the therapeutic monoclonal antibody with a lower quantitation limit of 0.5 microg/mL. The LC-MS assay had improved accuracy and precision, and the results from analysis of in vivo study samples showed good agreement with the data obtained with an ELISA. The results from this study indicate that the LC-MS bioassay is a simple and feasible approach for the bioanalysis of therapeutic proteins to support in vivo studies during early drug discovery and development.  相似文献   

8.
Cardiac glycosides (CG) are of forensic importance because of their toxicity and the fact that very limited methods are available for identification of CG in biological samples. In this study, we have developed an identification and quantification method for digoxin, digitoxin, deslanoside, digoxigenin, and digitoxigenin by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). CG formed abundant [M + NH4]+ ions and much less abundant [M + H]+ ions as observed with electrospray ionization (ESI) source and ammonium formate buffer. Under mild conditions for collision-induced dissociation (CID), each [M + NH4]+ ion fragmented to produce a dominant daughter ion, which was essential to the sensitive method of selected reaction monitoring (SRM) quantification of CG achieved in this study. SRM was compared with selected ion monitoring (SIM) regarding the effects of sample matrixes on the methodology. SRM produced lower detection limits with biological samples than SIM, while both methods produced equal detection limits with CG standards. On the basis of the HPLC/MS/MS results for CG, we have proposed some generalized points for conducting sensitive SRM measurements, in view of the property of analytes as well as instrumental conditions such as the type of HPLC/MS interface and CID parameters. Analytes of which the molecular ion can produce one abundant daughter ion with high yield under CID conditions may be sensitively measured by SRM. ESI is the most soft ionization source developed so far and can afford formation of the fragile molecular ions that are necessary for sensitive SRM detection. Mild CID conditions such as low collision energy and low pressure of collision gas favor production of an abundant daughter ion that is essential to sensitive SRM detection. This knowledge may provide some guidelines for conducting sensitive SRM measurements of very low concentrations of drugs or toxicants in biological samples.  相似文献   

9.
The absolute quantitation of amine metabolites from mammalian cell samples was achieved by combining amine standards, isobaric tags, and capillary liquid chromatography (LC) tandem mass spectrometry (MS/MS). Our approach allowed 32 specific amines to be analyzed within a single chromatographic run, with the generation of the calibration curve and absolute quantitation of each analyte taking less than 900 ms. Using this strategy, we determined the amine response of human aortic endothelial cells (HAECs) from a glucose challenge. The observed changes of the absolute concentration of these metabolites implied eight enzymatic reactions may change efficiency upon glucose treatment. Five of these reactions have been previously reported as being up-regulated in diabetic conditions. The remaining three reactions were analyzed by measuring the expression of these enzymes, with 66% showing increases. Our data indicate that rapid determination of absolute quantitation is useful in determining novel pathway activation. Furthermore, even though we determined the absolute quantity of 32 metabolites here, the number of analytes that can be measured by this method is limited mainly by commercial availability of amine standards.  相似文献   

10.
The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of epsilon-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.  相似文献   

11.
Chen Y  Kim SC  Zhao Y 《Analytical chemistry》2005,77(24):8179-8184
The high sensitivity and accuracy of mass spectrometry for identifying proteins has led to an explosive expansion of proteomics research, necessitating rapid procedures for HPLC/MS/MS analysis. Current HPLC/MS/MS analysis usually relies on elution of peptides from the HPLC column with a gradient that takes a total of 45-70 min for each cycle, limiting sample throughput and the speed of protein identification. Here we report a simple method for high-throughput protein identification, using isocratic, either methanol- or acetonitrile-based buffer systems, HPLC elution into an LTQ mass spectrometer. This procedure allows each cycle of highly sensitive HPLC/MS/MS analysis to be completed in 5 min, thus boosting the efficiency of HPLC/MS/MS analysis 9-14-fold. Using this method, each operator can acquire HPLC/MS/MS data for 96 in-gel proteolytic digests in one 8-h working day. The method can easily be implemented in any laboratory with an LTQ mass spectrometer. This protocol should find wide application in mass spectrometry laboratories that require high-throughput analysis but are limited by inefficient use of machine time.  相似文献   

12.
Systematic identification of mitochondrial proteins by LC-MS/MS   总被引:6,自引:0,他引:6  
In eukaryotic cells, the mitochondrion is the key organelle for cellular respiration. Mitochondrial proteome analysis is difficult to perform by the classical proteomic approach involving two-dimensional gel electrophoresis (2DE), because this organelle contains a large number of membrane-associated and highly alkaline proteins usually requiring specific treatments to be successfully analyzed. Here, an alternative approach was evaluated and led to the rapid and sensitive identification of approximately 35% of the yeast mitochondrial proteins. It consists of an SDS-PAGE gel electrophoresis of the total mitochondrial protein in combination with the LC-MS/MS analysis of the digestion products of gel slices. The use of only 40 microg of mitochondrial protein enabled the identification of 179 different gene products divided into similar proportions of membrane and soluble proteins. The distribution of the identified proteins in terms of pI and hydrophobicity revealed that the present analytical strategy is largely unbiased. The identification of 28 proteins of previously unknown subcellular localization demonstrated the ability of SDS-PAGE-LC-MS/MS to rapidly supplement the knowledge of the mitochondrial proteome.  相似文献   

13.
Nonenzymatic protein glycation is caused by a Schiff's base reaction between the aldehyde groups of reducing sugars and the primary amines of proteins. A reversed-phase liquid chromatography method followed by a neutral loss scan mass spectrometric method was developed for the screening of glycation in proteins. The neutral loss scan was based on a unique sugar moiety neutral loss (-162 Da) that we observed in the fragmentation spectra of glycated peptides on Q-Tof type mass spectrometers. The collision energy was optimized for this neutral loss using a glycated synthetic peptide, and 20 eV was found to be the optimum collision energy. The neutral loss scan experiment was composed of two segments. In the first segment, the glycated peptides were identified based on the signature neutral loss of 162 Da when the collision energy was elevated to 20 eV. In the second segment, the glycated peptides were selected as the parent ions and fragmented at higher collision energy to break the peptide bonds. The fragmentation spectra of the selected glycated peptides revealed both the amino acid sequences and the sites of glycation. This neutral loss scan method was used to study the glycation in human serum albumin (HSA). The glycation sites in HSA were identified based on the retention time shift of glycated peptides, the mass accuracy from the MS scan, the signature neutral loss, and MS/MS information. Using this method, we were able to identify that 31 lysine residues were partially glycated from the glycated HSA sample, which has a total of 59 lysine residues.  相似文献   

14.
Oil bodies (OBs) are plant cell organelles that consist of a lipid core surrounded by a phospholipid monolayer embedded with specialized proteins such as oleosins. Recombinant proteins expressed in plants can be targeted to OBs as fusions with oleosin. This expression strategy is attractive because OBs are easily enriched and purified from other cellular components, based on their unique physicochemical properties. For recombinant OBs to be a potential therapeutic agent in biomedical applications, it is necessary to comprehensively analyze and quantify both endogenous and heterologously expressed OB proteins. In this study, a mass spectrometry (MS)-based method was developed to accurately quantify an OB-targeted heterologously expressed fusion protein that has potential as a therapeutic agent. The effect of the chimeric oleosin expression upon the OB proteome in transgenic plants was also investigated, and the identification of new potential OB residents was pursued through a variety of liquid chromatography (LC)-MS/MS approaches. The results showed that the accumulation of the fusion protein on OBs was low. Moreover, no significant differences in the accumulation of OB proteins were revealed between transgenic and wild-type seeds. The identification of five new putative components of OB proteome was also reported.  相似文献   

15.
We report a robust, reliable, and comprehensive analytical method for the identification and quantification of the entire class of coenzyme A (CoA) activated substances, particularly short-, medium-, and long-chain acyl-CoAs derived from various biological tissues. This online SPE-LC/MS/MS-based method is characterized by a simple three-step sample preparation: (1) addition of buffer, organic solvents, and internal standards; (2) homogenization; and (3) centrifugation. The supernatant is injected directly into the SPE-LC/MS/MS system. Identification of CoA activated compounds is performed by accurate mass determination within the HPLC run. Method validation for short-, medium-, and long-chain acyl-CoA fatty acids revealed excellent quality. Accuracy was found to be between 87 and 107% and precision was between 0.1 and 12.8% in mouse skeletal muscle. The lower limit of quantification for all investigated compounds was well below 3.1% of estimated physiological levels in 200 mg of mouse tissue. Comparable results were obtained for mouse liver, mouse brown white adipose tissue and rat liver. For all investigated tissues, no matrix effect was observed.  相似文献   

16.
A quantitative LC-APCI-MS/MS method for simultaneous measurement of opiates, cocaine, and metabolites in hair was developed and validated. Cocaine and opiates were extracted from pulverized hair via sonication in methanol at 37 degrees C for 3 h. Samples were cleaned up using solid-phase extraction. LC separation was achieved in 20 min with identification and quantification by selected reaction monitoring. Calibration by linear regression analysis utilized deuterated internal standards and a weighting factor of 1/x (R(2) > 0.998). Limits of quantification (LOQ) ranged from 17 to 50 pg/mg for cocaine and metabolites and were 83 pg/mg for opiates. Standard curves were linear from the LOQ to 5000 pg/mg for cocaine and metabolites, except benzoylecgonine (2500 pg/mg). Opiate standard curves were linear from the LOQ to 12500 pg/mg. Accuracy ranged from 84 to 115% for all quantitative analytes. Precision, % relative standard deviation, was less than 11.0% for all analytes. Methanolic sonication produced less than 5% hydrolysis of cocaine and 6-acetylmorphine. The method should be useful for studying cocaine and opiate distribution into hair.  相似文献   

17.
Solid-phase extraction (SPE) was tested for the isolation of dissolved lignin from diverse natural waters (fresh, estuarine, and marine) in preparation for CuO oxidation. Capillary GC coupled to selected-ion monitoring mass spectrometry (SIM-MS) of CuO oxidation products provides the high sensitivity and precision required for the identification and quantification of trace levels of lignin in seawater. The low blanks and quick cleanup of C18 cartridges support SPE for processing such samples. Comparison of SPE with other isolation procedures (direct dry-down and ultrafiltration) has shown that this method quantitatively recovers dissolved lignin and preserves its compositional parameters. The concentration and nature of dissolved organic matter appear to be primary factors that constrain the amount of water that should be processed to obtain quantitative and reproducible recoveries of dissolved lignin using SPE. Highest recoveries of dissolved lignin were obtained at low pH (1.5-4.0) with substantial decreases at pH > 4. Extraction efficiencies were independent of flow rate within a range of five to fifteen bed volumes per minute (50-150 mL min(-1)), and both refrigeration and freezing were appropriate long-term storage methods for processed cartridges prior to elution of retained dissolved lignin.  相似文献   

18.
Labeling reagents that differ only in their isotopic composition offer a powerful approach to achieve relative quantification between samples by ESI-MS. Heavy and light isotopic forms of cholamine, which contain a positively charged quaternary ammonium group, were synthesized and tested as new labeling reagents for the relative quantification of carboxylic acid-containing metabolites, specifically fatty acids. The positive charge on cholamine ensures that the labeled product is also positively charged under all LC-MS conditions, regardless of mobile-phase pH. This leads to high ionization efficiency and correspondingly high detection sensitivity, demonstrated here for the analysis of fatty acids in positive ion mode ESI-MS after reversed-phase separation under acidic conditions. Good accuracy and precision were obtained by mixing heavy- and light-labeled hydrolyzed egg lipid extracts in different known ratios. The relative quantification results for 10 observed fatty acids had an average absolute error of 4.6% and an average coefficient of variation (CV) of 2.6%. The labeling strategy yielded a median CV of 6% when employed for fatty acid analysis of eggs from chickens fed various dietary supplements.  相似文献   

19.
A series of epipolythiodioxopiperazines in the fungus Chaetomium cochliodes was investigated using reversed-phase liquid chromatography with diode array detection and electrospray quadrupole time-of-flight-type tandem mass spectrometry in the positive ion mode. The fragmentation of protonated molecular ions including low-abundance parent ions, [M+H]+ for five known epipolythiodioxopiperazines, dethiotetra(methylthio)chetomin, chaetocochins A-C, and chetomin, was carried out using low-energy collision-induced electrospray ionization tandem spectrometry. It was found that McLafferty rearrangements occurred in the CID processes and produced a complementary pair of characteristic fragment ions containing piperazine rings (fused and unfused), especially to determine the number of S atoms on each ring. The fragmentation differential between [M+H]+ and [M+Na]+ was uncovered. Complementary fragmentation information obtained from [M+H]+ and [M+Na]+ precursor ions is especially valuable for rapid identification of epipolythiodioxopiperazines. A likely known compound, possibly related to chetoseminudin A, and three new species of epipolythiodioxopiperazines from the fungus C. cochliodes were identified or tentatively characterized based on tandem mass spectra of known ones.  相似文献   

20.
The aldonitrile pentaacetate and other derivatives lack ions in the electron ionization (EI) spectra possessing an intact hexose structure and thus must be analyzed by chemical ionization GC/MS in order to study multiple isotopomers. We report methods for quantitation of hexose di-O-isopropylidene acetate (IPAc) or pentafluorobenzoyl (PFBz) esters. These were prepared in a two-step procedure using inexpensive reagents that do not adversely impact the isotopomer structure of the sugar. The acetate derivative possesses an abundant [M - CH3] ion in the EI spectrum which is suitable for quantitative analysis of isotopomers. The negative chemical ionization (NCI) spectrum of the corresponding pentafluorobenzoyl derivative has a dominant molecular anion. Moreover, the PFBz derivative is about 100-fold more sensitive than the acetate, which offers some advantages for analysis of minor hexoses found in plasma. Isotopic calibration curves of [U-13C]glucose are linear over the 0.1-60% tracer/tracee range tested. The useful range for isotopic tracer studies is 25-2500 pmol for EI analysis of the acetate derivative and 0.1-55 pmol for NCI analysis of PFBz derivative (sample amount injected). For most studies where sample size is not limited, EI-GC/MS analysis of the IPAc derivative is preferred. NCI-GC/MS analysis is reserved when sample size is limiting or when studies involve hexoses other than glucose that are normally present at low concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号