首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Fe,Ti)-N films with a Ti concentration of 10 at.% were prepared on Si(100) and NaCl substrates by facing targets sputtering. The effects of the nitrogen pressure (PN) and the substrate temperature (Ts) on the formation of various (Fe,Ti)-N phases and their microstructures were investigated in detail. X-ray diffractometer and transmission electron microscope provided complete identification of the phases present in the films and the characterization of their microstructures. Films deposited at a lower PN = 1 3 × 10−2 Pa or a lower Ts = RT consist of mainly -phase. Films deposited at a higher PN = 1.3 2 × 10−1 Pa or a higher Ts = 200 °C contain a great many γ' and Fe2N phases with a higher nitrogen content. When PN = 4 7 × 10−2 Pa and Ts = 100 150 °C, it is advantageous to the formation of ′' phase. These films exhibit a high saturation magnetization (Ms) up to the range of 2.3 2.5 T, which is larger than that of pure iron.  相似文献   

2.
New materials for a transparent conducting oxide film are demonstrated. Highly transparent Zn2In2O5 films with a resistivity of 3.9 × 10−4 Ω cm were prepared on substrates at room temperature using a pseudobinary compound powder target composed of ZnO (50 mol.%) and In2O3 (50 mol.%) by r.f. magnetron sputtering. MgIn2O4---Zn2In2O5 films were prepared using MgIn2O4 targets with a ZnO content of 0–100 wt.%. The resistivity of the deposited films gradually decreased from 2 × 10−3 to 3.9 × 10−4 Ω cm as the Zn/(Mg + Zn) atomic ratio introduced into the films was increased. The greatest transparency was obtained in a MgIn2O4 film. The optical absorption edge of the films decreased as the Zn/(Mg + Zn) atomic ratio was increased, corresponding to the bandgap energy of their materials. It was found that the resistance of the undoped Zn2In2O5 films was more stable than either the undoped MgIn2O4, ZnO or In2O3 films in oxidizing environments at high temperatures.  相似文献   

3.
Appreciable excited-state absorption (ESA) in U2+:CaF2 and Co2+:ZnSe saturable absorbers was measured at λ=1.573 μm by optical transmission versus light fluence curves of 30–40 ns long pulses. The ground- and excited-state absorption cross-sections obtained were (9.15±0.3)×10−20 and (3.6±0.2)×10−20 cm2, respectively, for U2+:CaF2, and (57±4)×10−20 and (12.5±1)×10−20 cm2 for Co2+:ZnSe. Thus, ESA is not negligible in U2+:CaF2 and Co2+:ZnSe, as previously estimated.  相似文献   

4.
Transparent lead zirconium titanate (PZT) thin film is suitable for a variety of electro-optic application, and the increasing of the electro-optic coefficient of PZT film is one of the important factors for this application. In this study, the main processing variable for improving an electro-optic coefficient was the drying temperature: 300, 350, 450 and 500°C in sol-gel derived PZT thin films. The highest linear electro-optic coefficient (1.65×10−10 (m/V)) was observed in PZT film dried at 450°C. The PZT film showed the highest perovskite content, polarization (Pmax=49.58 μC/cm2, Pr=24.8 μC/cm2) and dielectric constant (532). A new two-beam polarization (TBP) interferometer with a reflection configuration was used for electro-optic testing of PZT thin films which allows measurement of the linear electro-optic coefficient of thin film with strong Fabry–Perot (FP) effect usually present in PZT thin film.  相似文献   

5.
A XeCl excimer laser (λ=308 nm) has been used to anneal Indium Tin Oxide (ITO) films deposited at 25 °C using DC magnetron sputtering. With increasing laser fluence, the film crystallinity was improved while retaining the as-deposited 111 texture. As a result of laser irradiation, the sheet resistance of 100 nm ITO films decreased from 191 Ω/□ (1.91×10−3 Ω cm) to 25 Ω/□ (2.5×10−4 Ω cm), while the optical transmittance in the visible range increased from 70% to more than 85%. Surface roughness and etching properties were also significantly improved following laser annealing.  相似文献   

6.
M. Din  R. D. Gould 《Thin solid films》1999,340(1-2):28-32
Cadmium arsenide is a II–V semiconductor which exhibits n-type intrinsic conductivity with high mobility up to μn=1.0–1.5 m2/V s. Potential applications include magnetoresistors and both thermal and photodetectors, which require electrical characterization over a wide range of deposition and measurement conditions. The films were prepared by vacuum evaporation with deposition rates in the range 0.5–6.0 nm/s and substrate temperatures maintained at constant values of 20–120°C. Sandwich-type samples were deposited with film thicknesses of 0.1–1.1 μm using evaporated electrodes of Ag and occasionally Au or Al. Above a typical electric field Fb of up to 5×107 V/m all samples showed instabilities characteristic of dielectric breakdown or electroforming. Below this field they showed a high-field conduction process with logJV1/2, where J is the current density and V the applied voltage. This type of dependence is indicative of carrier excitation over a potential barrier whose effective barrier height has been lowered by the high electric field. The field-lowering coefficient β had a value of (1.2–5.3)×10−5 eV m1/2/V1/2 which is reasonably consistent with the theoretical value of βPF=2.19×10−5 eV m1/2/V1/2 expected when the field-lowering occurs at donor-like centres in the semiconductor (Poole–Frenkel effect). For thinner films Schottky emission was more probable. The effects of the film thickness, electrode materials, deposition rate, and substrate temperature on the conductivity behaviour are discussed.  相似文献   

7.
The preparation of very thin indium tin oxide (ITO) films with extremely high transparency and suitable resistivity, as well as resistivity stability for long term use, is described. In order to obtain these properties, amorphous suboxide films were first prepared and then annealed. Suboxide films with a thickness of 20 to 30 nm were prepared on PET film and glass substrates at a temperature of 60 °C using In2O3---SnO2 targets with a SnO2 content of 0 to 10 wt% by DC magnetron sputtering in a pure argon gas atmosphere. The films were annealed at a temperature of 150 °C for 1 to 100 h in air. The resistivity of films on PET films was, depending on the SnO2 content, on the order of 10−3 ω cm. An average transmittance above 97% in the visible wavelength range and a resistivity of about 4 × 10−3 ω cm, as well as resistivity stability, were attained in ITO films with a SnO2 content of about 1 wt% prepared on PET films by the low-temperature process. It is thought that these properties result from crystallization which occurred during the annealing, duration up to about 25 h.  相似文献   

8.
The dielectric properties and electrical conductivity of AlN films deposited by laser-induced chemical vapour deposition (LCVD) are studied for a range of growth conditions. The static dielectric constant is 8.0 ± 0.2 over the frequency range 102−107 Hz and breakdown electric fields better than 106 V cm−1 are found for all films grown at temperatures above 130°C. The resistivity of the films grown under optimum conditions (substrate temperature above 170°C, NH3/TMA flow rate ratio greater than 300 and a deposition pressure of 1–2 Torr) is about 1014 Ω cm and two conduction mechanisms can be identified. At low fields, F < 5 × 105 V cm−1 and conductivity is ohmic with a temperature dependence showing a thermal activation energy of 50–100 meV, compatible with the presumed shallow donor-like states. At high fields, F > 1 × 106 V cm−1, a Poole-Frenkel (field-induced emission) process dominates, with electrons activated from traps at about 0.7–1.2 eV below the conduction band edge. A trap in this depth region is well-known in AlN. At fields between 4 and 7 × 105 V cm−1 both conduction paths contribute significantly. The degradation of properties under non-ideal growth conditions of low temperature or low precursor V/III ratio is described.  相似文献   

9.
Thin films of copper indium di-selenide (CIS) with a wide range of compositions near stoichiometry have been formed on glass substrates in vacuum by the stacked elemental layer (SEL) deposition technique. The compositional and optical properties of the films have been measured by proton-induced X-ray emission (PIXE) and spectrophotometry (photon wavelength range of 300–2500 nm), respectively. Electrical conductivity (σ), charge-carrier concentration (n), and Hall mobility (μH) were measured at temperatures ranging from 143 to 400 K. It was found that more indium-rich films have higher energy gaps than less indium-rich ones while more Cu-rich films have lower energy gaps than less Cu-rich films. The sub-bandgap absorption of photons is minimum in the samples having Cu/In ≈ 1 and it again decreases, as Cu/In ratio becomes less than 0.60. Indium-rich films show n-type conductivities while near-stoichiometric and copper-rich films have p-type conductivities. At 300 K σ, n and μH of the films vary from 2.15 × 10−3 to 1.60 × 10−1 (Ω cm)−1, 2.28 × 1015 to 5.74 × 1017 cm−3 and 1.74 to 5.88 cm2 (V s)−1, respectively, and are dependent on the composition of the films. All the films were found to be non-degenerate. The ionization energies for acceptors and donors vary between 12 and 24, and 3 and 8 meV, respectively, and they are correlated well with the Cu/In ratios. The crystallites of the films were found to be partially depleted in charge carriers.  相似文献   

10.
For the first time, thin film devices of charge transfer adducts of tetrathiafulvalene (TTF) have been fabricated. A luminance of 5 cd m−2 has been achieved for a device structure ITO/poly(aniline)/TTF(NO3)0.55/Al whose EL spectrum has a broad peak at 645 nm. The devices were fabricated by spin coating from solutions of the adducts. A luminous efficiency of 5×10−4 lm W−1 has been obtained for these devices which is comparable to that of ITO/poly(aniline)/Alq3/Al (5.2×10−4 lm W−1) under same fabrication conditions. The single layer, mixed layer and double layer devices fabricated in this study fit the space charge limited model. Devices fabricated from the adduct [TTF–Alq3] emit white light (40 cd m−2) with a luminous efficiency of 6.6×10−4 lm W−1. The colour of light emitted appears to depend on the effective oxidation state of TTF in the adducts.  相似文献   

11.
We report studies focusing on the nature of trap states present in single layer ITO/poly(phenylene vinylene)/Al light emitting diodes. At high applied bias the IV characteristics from 11 to 290 K can be successfully modelled by space charge limited current (SCLC) theory with an exponential trap distribution, giving a trap density Ht of 4(±2) × 1017 cm−3, μp, between 10−6 and 5 × 10−8 cm2 V−1 s−1 and a characteristic energy Et of 0.15 eV at high temperatures. The transient conductance follows a power-law relationship with time whose decay rate decreases with decreasing temperature. This can be directly related to the emptying of the trap distribution found in the SCLC analysis. Due to variations in structure, conformation and environment, the polymer LUMO and HOMO density of states form Gaussian distributions of chain sites. The deep sites in the tail of the distributions are the observed traps for both positive and negative carriers. The same sites dominate the photo- and electroluminescence emission. This implies that the emissive layer in organic LED's should be made as structurally disordered as possible.  相似文献   

12.
New barrier layer, etch stop and hardmask films, including hydrogenated amorphous a-SiCx:H (SiC), a-SiCxOy:H (SiCO), and a-SiCxNy:H (SiCN) films with a dielectric constant (k) approximately 4.3, are produced using the plasma-enhanced chemical vapor deposition technique. The chemical and structural nature, and mechanical properties of these films are characterized using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and nano-indentation. The leakage current density and breakdown electric field are investigated by a mercury probe on a metal-insulator-semiconductor structure. The properties of the studied films indicate that they are potential candidates as barrier layer, etch stop and hardmask films for the advanced interconnect technology. The SiC film shows a high leakage current density (1.3×10−7 A/cm2 at 1.0 MV/cm) and low breakdown field (1.2 MV/cm at 1.0×10−6 A/cm2). Considering the mechanical and electrical properties requirements of the interconnect process, SiCN might be a good choice, but the N content may result in via poison problem. The low leakage current (1.2×10−9 A/cm2 at 1.0 MV/cm), high breakdown field (3.1 MV/cm at 1.0×10−6 A/cm2), and relative high hardness (5.7 GPa) of the SiCO film indicates a good candidate as a barrier layer, etch stop, or hardmask.  相似文献   

13.
Using a Zn3In2O6 target, indium-zinc oxide films were prepared by pulsed laser deposition. The influence of the substrate deposition temperature and the oxygen pressure on the structure, optical and electrical properties were studied. Crystalline films are obtained for substrate temperatures above 200°C. At the optimum substrate deposition temperature of 500°C and the optimum oxygen pressure of 10−3 mbar, both conditions that indeed lead to the highest conductivity, Zn3In2O6 films exhibit a transparency of 85% in the visible region and a conductivity of 1000 S/cm. Depositions carried out in oxygen and reducing gas, 93% Ar/7% H2, result in large discrepancies between the target stoichiometry and the film composition. The Zn/In (at.%) ratio of 1.5 is only preserved for oxygen pressures of 10−2–10−3 mbar and a 93% Ar/7% H2 pressure of 10−2 mbar. The optical properties are basically not affected by the type of atmosphere used during the film deposition, unlike the conductivity which significantly increases from 80 to 1400 S/cm for a film deposited in 10−2 mbar of O2 and in 93% Ar/7% H2, respectively.  相似文献   

14.
Physical and electrical properties of hafnium silicon oxynitride (HfSixOyNz) dielectric films prepared by UV ozone oxidation of hafnium silicon nitride (HfSiN) followed by annealing to 450 °C are reported. Interfacial layer growth was minimized through room temperature deposition and subsequent ultraviolet/ozone oxidation. The capacitance–voltage (CV) and current–voltage (IV) characteristics of the as-deposited and annealed HfSixOyNz are presented. These 4 nm thick films have a dielectric constant of 8–9 with 12 at.% Hf composition, with a leakage current density of 3×10−5 A/cm2 at Vfb+1 V. The films have a breakdown field strength >10 MV/cm.  相似文献   

15.
The dynamic Young’s modulus, E, of amorphous (a-) Zr60Cu30Al10 (numbers indicate at.%) alloy was measured as a function of frequency, f, with a strain amplitude, t, of 10−6, E(10−6,f), and also as a function of t for f near 102 Hz, E(t,102 Hz), by means of the vibrating reed methods. The elasticity study under the passing of electric current (PEC) was carried out too. E(10−6,f) is lower than E0 for f between 10 and 104 Hz showing local minima near 5×10, 5×102 and 5×103 Hz, which are indicative of the resonant collective motion of many atoms, where E0 is the static Young’s modulus. E(t,102 Hz) increases showing saturation with increasing t. Qualitatively, the outlines of E(10−6,f) and E(t,102 Hz) observed for a-Zr60Cu30Al10 are similar to those reported for various a-alloys. Quantitatively, a change in E(t,102 Hz) for a-Zr60Cu30Al10 is smallest among that reported for various a-alloys, presumably reflecting that the crystallization volume, (ΔV/V)x, is smallest for a-Zr60Cu30Al10. The effective charge number, Z*, estimated from the change in E(10−6,102 Hz) due to PEC is 3.0×105, which is comparable with Z* reported for various a-alloys. We surmise that the number of atoms in the collective motions excited near 102 Hz is similar among various a-alloys. The E(10−6,f) data suggest that the spatial sizes of the density fluctuations may show a distribution.  相似文献   

16.
Catalytic chemical vapor deposition (Cat-CVD) has been developed to deposit alumina (Al2O3) thin films on silicon (Si) crystals using N2 bubbled tri-methyl aluminum [Al(CH3)3, TMA] and molecular oxygen (O2) as source species and tungsten wires as a catalyzer. The catalyzer dissociated TMA at approximately 600 °C. The maximum deposition rate was 18 nm min−1 at a catalyzer temperature of 1000 °C and substrate temperature of 800 °C. Metal oxide semiconductor (MOS) diodes were fabricated using gates composed of 32.5-nm-thick alumina film deposited at a substrate temperature of 400 °C. The capacitance measurements resulted in a relative dielectric constant of 7.4, fixed charge density of 1.74×1012 cm−2, small hysteresis voltage of 0.12 V, and very few interface trapping charges. The leakage current was 5.01×10−7 A cm−2 at a gate bias of 1 V.  相似文献   

17.
High-quality LB multilayers have been prepared from the Lu(III) sandwich complex of 2,3,9,10,16,17,23,24-octa (n-butoxy)phthalocyanine (LuPc2(OBu)16). Surface pressure-area isotherms were characterized and indicate that a stable monolayer is formed corresponding to an area per molecule of 2.4 nm2 at 30 mN m−1. The LB films were highly birefringent, and polarized spectra gave dichroic ratios of 3.3 for the 670 nm absorption band and between 0.5 and 2.8 for infrared absorptions. The results indicate that the phthalocyanine rings were highly oriented perpendicular to the dipping direction but somewhat tilted from the substrate normal. The order was shown to be absent when (i) unsubstituted LuPc2 was used for LB films, or (ii) the horizontal lifting method of film deposition was used, or (iii) the surface pressure was increased to 50 mN m−1, causing a molecular rearrangement. The ordering was improved at 100 °C and finally lost at 280 °C by annealing on a hot stage. The d.c. electrical conductivity of LB films of LuPc2(OBu)16 was low (σ ≈ 2 × 10−7 Ω−1 m−1), in contrast with unsubstituted LuPc2 (σ ≈ 10−1 Ω−1 m−1) and showed no evidence for anisotropy. The findings are in broad agreement with related studies and illustrate some of the many factors involved in improving the structure of phthalocyanine LB films for possible applications.  相似文献   

18.
In the development of ZnO-based varistors the electrical properties of ZnO/Bi2O3 junctions and of the two individual oxides are being investigated. Following our recent work on a.c. conductivity in Al---ZnO---Al sandwich structures we currently report d.c. measurements. The structures were prepared by r.f. magnetron sputtering in an argon/oxygen mixture in the ratio 4:1. Capacitance-voltage data confirm that the Al/ZnO interface does not form a Schottky barrier and measurements of the dependence of capacitance on film thickness indicate that the relative permittivity of the films is approximately 9.7. With increasing voltage the current density changed from an ohmic to a power-law dependence with exponent n≈3. Furthermore measurements of current density as a function of reciprocal temperature showed a linear dependence above about 240 K, with a very low activation energy below this temperature consistent with a hopping process. The higher temperature results may be explained assuming a room-temperature electron concentration n0 and space-charge-limited conductivity, dominated by traps exponentially distributed with energy E below the conduction band edge according to N = N0exp(−E/kTt), where k is Boltzmann's constant. Typical derived values of these parameters are: n0 = 7.2 × 1016 m−3, N0 = 1.31 × 1045 J−1 m−3 and Tt = 623 K. The total trap concentration and the electron mobility were estimated to be 1.13 × 1025 m−3 and (5.7−13.1) ×10−3m2V−1s−1 respectively.  相似文献   

19.
X-ray diffraction (XRD), current–voltage (IV), capacitance–voltage (CV), deep-level transient Fourier spectroscopy (DLTFS) and isothermal transient spectroscopy (ITS) techniques are used to investigate the thermal annealing behaviour of three deep levels in Ga0.986In0.014As heavily doped with Si (6.8 × 1017 cm−3) grown by molecular beam epitaxy (MBE). The thermal annealing was performed at 625 °C, 650 °C, 675 °C, 700 °C and 750 °C for 5 min. XRD study shows good structural quality of the samples and yields an In composition of 1.4%. Two main electron traps are detected by DLTFS and ITS around 280 K, with activation energies of 0.58 eV and 0.57 eV, capture cross sections of 9 × 10−15 cm2 and 8.6 × 10−14 cm2 and densities of 2.8 × 1016 cm−3 and 9.6 × 1015 cm−3, respectively. They appear overlapped and as a single peak, which divides into two smaller peaks after annealing at 625 °C for 5 min.

Annealing at higher temperatures further reduces the trap concentrations. A secondary electron trap is found at 150 K with an activation energy of 0.274 eV, a capture cross section of 8.64 × 10−15 cm2 and a density of 1.38 × 1015 cm−3. The concentration of this trap level is also decreased by thermal annealing.  相似文献   


20.
Chromium disilicide (CrSi2) films 1 000 Å thick have been prepared by molecular beam epitaxy on CrSi2 templates grown on Si(111) substrate. The effect of the substrate temperature on the structural, electrical and optical properties of CrSi2 films has been studied by transmission and scanning electron microscopies, optical microscopy, electrical resistivity and Hall effect measurements and infrared optical spectrometry. The optimal temperature for the formation of the epitaxial A-type CrSi2 film have been found to be about 750°C. The electrical measurement have shown that the epitaxial A-type CrSi2 film is p-type semiconductor having a hole concentration of 1 × 1017cm−3 and Hall mobility of 2 980 cm2 V−1 s−1 at room temperature. Optical absorption coefficient data have indicated a minimum, direct energy gap of 0.34 eV. The temperature dependence of the Hall mobility (μ) in the temperature range of T = 180–500 K can be expressed as μ = 7.8 × 1010T−3cm2V−1s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号