首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
从银杏叶中提取银杏黄酮的研究   总被引:4,自引:0,他引:4  
采用水-乙醇作提取溶剂回流提取了银杏叶中的银杏黄酮.设计正交实验确定影响提取银杏黄酮的显著因素为料液比、乙醇浓度、提取温度.单因素实验确定提取工艺的最佳条件为料液比110,乙醇浓度70%,提取温度70℃,粒度40~80目,回流提取时间为2h.银杏黄酮的提取率达到86.5%.  相似文献   

2.
采用水-乙醇作提取溶剂回流提取了银杏叶中的银杏黄酮.设计正交实验确定影响提取银杏黄酮的显著因素为料液比、乙醇浓度、提取温度.单因素实验确定提取工艺的最佳条件为料液比1:10,乙醇浓度70%,提取温度70℃,粒度40~80目,回流提取时间为2h.银杏黄酮的提取率达到86.5%.  相似文献   

3.
验以葛根粉为原料、乙醇为溶剂,研究了不同提取时间、不同提取温度、不同乙醇浓度对葛根黄酮提取率的影响,在单因素实验的基础上用紫外分光光度计法进行含量测定,并进行了3因素3水平的Box-Behnken设计优化了葛根黄酮的有关提取参数,最优工艺条件为:提取时间60min、提取温度80℃、乙醇浓度60%。在最佳优化条件下葛根黄酮提取率达到极大值,葛根黄酮提取率为36.64%。该方法快速简单,结果准确,可用于葛根素提取。  相似文献   

4.
采用乙醇浸提法提取马尾松松针黄酮类化合物,通过单因素实验和正交实验考察乙醇浓度、料液比、提取时间、提取温度对马尾松松针黄酮提取率的影响。结果表明,最佳工艺条件为:乙醇浓度55%,料液比1∶55 g/mL,提取时间60 min,提取温度70℃。各因素影响的主次为料液比提取温度乙醇浓度提取时间。在最佳提取条件下,马尾松松针黄酮提取率为8.602%。  相似文献   

5.
为了优化猕猴桃花黄酮的提取工艺,采用超声波辅助提取猕猴桃花中的黄酮,在液料比、乙醇浓度、时间、温度和提取次数单因素实验基础上,进行了正交实验优化工艺参数.研究结果表明:最佳提取工艺条件为∶液料比25∶1,乙醇浓度60%,温度60℃,超声时间为40 min,在最优条件下红阳猕猴桃花黄酮提取率为2.10%.采用常规的回流加热提取法黄酮提取率仅为1.82%.  相似文献   

6.
采用乙醇浸提法提取马尾松松针黄酮类化合物,通过单因素实验和正交实验考察乙醇浓度、料液比、提取时间、提取温度对马尾松松针黄酮提取率的影响。结果表明,最佳工艺条件为:乙醇浓度55%,料液比1∶55 g/mL,提取时间60 min,提取温度70℃。各因素影响的主次为料液比>提取温度>乙醇浓度>提取时间。在最佳提取条件下,马尾松松针黄酮提取率为8.602%。  相似文献   

7.
《化学世界》2015,56(1)
采用乙醇回流提取法,以亚硝酸钠、硝酸铝、氢氧化钠为试剂,芦丁为对照,研究柳树叶中黄酮含量的测定。利用正交实验对柳树叶中黄酮含量测定方法进行优化。以乙醇浓度、回流时间、回流温度、料液比为因素,总黄酮显色液的吸光度为指标进行实验。得到的最佳条件为:乙醇浓度50%,料液比1∶30,回流时间为1h,回流温度为70℃,在最佳条件下的总黄酮含量为18.92mg/g。  相似文献   

8.
冯朋  孙敏  张丽萍 《应用化工》2013,42(6):1089-1091
研究了有机溶剂、超声波和超声-微波协同提取银杏叶中芦丁、木犀草素、槲皮素、山奈酚、异鼠李素5种黄酮的工艺条件。结果表明,有机溶剂提取最佳提取工艺:提取温度70℃,提取时间为3 h,乙醇浓度为70%;超声波最佳提取工艺:提取时间40 min,乙醇浓度70%,料液比1∶10;超声-微波协同最佳提取工艺:提取时间5 min,乙醇浓度70%,料液比1∶8。  相似文献   

9.
本文采用超声波提取,紫外分光光度计测定样品中黄酮含量,考察乙醇浓度、提取时间、料液比、提取温度四个因素对黄酮提取率的影响,采用L_9(3~4)正交试验法,优化黄酮化合物的最佳提取工艺。实验结果:最佳提取工艺为70%的乙醇、提取时间40min、料液比1∶15,提取温度为60℃,在此条件下总黄酮提取率为5.96%。  相似文献   

10.
以银杏叶黄酮含量为指标,使用乙醇为提取剂,温度、时间、液固相比、粉碎度为提取因素,探索放大实验的响应面优化实验,确定最佳工艺条件。通过小试实验,确定最佳条件:温度75℃,时间70 min,液固比11∶1,粉碎度在120~100目。以温度、时间和液固比为响应面优化条件。中试优化响应面优化条件为:温度75℃,时间70 min,液固比11∶1,提取率可高达12.03%。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

16.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

17.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

18.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号