共查询到19条相似文献,搜索用时 62 毫秒
1.
韩璐宋海亮宋佳刘太豪 《南昌大学学报(工科版)》2021,43(1):85
为解决光伏发电受详细、复杂的天气数据所影响的问题,提出一种基于特征提取的萤火虫算法(FA)优化误差回传神经网络(BP神经网络)的FA-BP短期光伏发电预测模型。为提高收敛速度利用主成分分析法(PCA)对光伏发电历史数据以及历史天气数据进行降维与去噪,选取影响光伏发电的主要成分并构建PCA-BP预测模型。并利用FA对PCA-BP预测模型进行阈值和权值的优化,进而构建PCA-FA-BP的光伏发电预测模型。再将提出的PCA-FA-BP预测模型与BP神经网络预测模型、PCA-BP预测模型以及单一的FA-BP预测模型进行光伏发电预测效果对比与分析,通过仿真结果表明:PCA-FA-BP预测模型拥有更佳的训练效果以及预测精度。 相似文献
2.
分析了影响光伏出力的主要因素,选取了太阳辐射量,以及隐含前一日综合气象信息的历史出力数据为关键影响因素,建立了改进的GA-BP神经网络的短期光伏发电功率预测模型.对样本空间进行了合理降维和去噪,并利用遗传算法逐步迭代出优化的初始权值,将得到的最优权值(阈值)赋值给预测网络各层进行学习和预测.仿真结果表明,改进的GA-BP神经网络模型能够剔除冗余的样本数据和优化初始权值,既具备了较快的收敛速度又不易陷入到局部极值中,具有较强的泛化能力,预测精确度大幅提高. 相似文献
3.
准确的短期光伏功率预测是调度部门合理制定发电计划、保证电力系统安全性和经济性的关键性技术.针对光伏出力可预测性低的问题,提出了一种结合因子分析(factor analysis,FA)、主成分分析(principal component analysis,PCA)和长短期记忆网络(long short-term memory,LSTM)的光伏发电短期功率预测方法.首先采用因子分析对多元数据序列信息进行分析,提取相关性较高的公共因子并优化样本.然后通过主成分分析对优化后的多元数据序列进行筛选,在充分利用序列信息的基础上降低数据规模和复杂程度.最后,利用LSTM网络对多元数据序列与光伏功率序列之间的非线性关系进行动态时间建模并预测.采用中国新疆某光伏电站的实测数据进行验证,算例分析结果表明所提预测方法的有效性. 相似文献
4.
讨论如何利用人工神经网络进行电力系统短期负荷预测。研究结果表明:基于BP神经网络的短期电力负荷预测具有精度高的特点,符合预测结果的相对误差小于3.06%。 相似文献
5.
为了解决BP神经网络在短期电力负荷预测中存在局部极小、收敛速度慢等问题,本文采用粒子群算法(Particle Swarm Optimization,PSO)优化Elman动态神经网络进行精准预测。根据输入输出参数个数确定Elman神经网络结构,利用PSO算法优化网络的权值和阈值,并将优化后的最优个体赋给Elman动态神经网络作为初始权值、阈值进行网络训练,从而建立基于PSO-Elman的电力负荷预测模型。采用某钢厂实测电力数据对该方法和模型进行验证,并与传统的BP、Elman网络模型预测方法进行对比,结果表明该方法和模型在有效缩短网络收敛时间的同时,具备更高的负荷预测精度和稳定性。 相似文献
6.
梯度提升决策树(GBDT)和支持向量机(SVM)是预测光伏出力的两种常用算法。分析了光伏发电出力的影响因素,介绍了GBDT算法和SVM算法的原理,以及基于两种算法的光伏出力预测模型的流程,并进行对比分析。实验结果表明,基于GBDT算法的光伏出力预测模型的平均绝对相对误差和均方根误差都较小,预测效果更好。 相似文献
7.
8.
针对大规模光伏并网给电力系统安全稳定运行带来的严峻挑战,考虑传统单一光伏场站功率预测的局限性,以区域性光伏集群功率为研究对象,提出一种基于BP神经网络的光伏集群功率的区间预测方法。通过互信息方法对变量进行相关性分析,提取关键解释变量作为输入变量,利用主成分分析进行数据降维,解决了光伏集群功率预测大数据处理的问题。利用神经网络在数据挖掘和非线性关系拟合方面的优越性,将神经网络和非参数概率预测相结合,量化光伏集群功率预测结果的不确定性。实验算例采用中国某地区10个光伏场站,利用未降维的原始数据与本研究所提出的数据降维方法进行对比,分别计算80%和90%预测区间,结果表明,本研究所提出的预测方法预测区间带更窄,具有更好的预测效果。利用本研究所提模型预测了某天超前72 h的80%和90%置信区间,验证了该方法的可行性和先进性。 相似文献
9.
基于PSO-RNN的光伏发电功率预测研究 总被引:1,自引:0,他引:1
针对光伏发电功率预测对电力系统的安全稳定和经济运行问题,本文提出了基于粒子群算法优化脊波神经网络的光伏功率预测模型。采用脊波函数作为隐含层激励函数的神经网络,即脊波神经网络,同时采用粒子群算法优化脊波神经网络的权值,并以实际光伏发电站的历史光伏发电数据和气象数据作为仿真算例,对预测模型进行仿真和测试。仿真结果表明,与BP神经网络预测模型相比,基于粒子群算法优化脊波神经网络预测模型的日平均绝对误差和日最大绝对误差均有所降低,证明粒子群算法优化脊波神经网络的预测模型具有较高预测精度,不仅加快了脊波神经网络收敛速度,而且避免了陷入局部最优解,具有一定的实用性及可行性。该研究为光伏发电功率预测提供了理论参考。 相似文献
10.
针对大规模光伏并网给电力系统安全稳定运行带来的严峻挑战,考虑传统单一光伏场站功率预测的局限性,以区域性光伏集群功率为研究对象,提出一种基于BP神经网络的光伏集群功率的区间预测方法。通过互信息方法对变量进行相关性分析,提取关键解释变量作为输入变量,利用主成分分析进行数据降维,解决了光伏集群功率预测大数据处理的问题。利用神经网络在数据挖掘和非线性关系拟合方面的优越性,将神经网络和非参数概率预测相结合,量化光伏集群功率预测结果的不确定性。实验算例采用中国某地区10个光伏场站,利用未降维的原始数据与本研究所提出的数据降维方法进行对比,分别计算80%和90%预测区间,结果表明,本研究所提出的预测方法预测区间带更窄,具有更好的预测效果。利用本研究所提模型预测了某天超前72 h的80%和90%置信区间,验证了该方法的可行性和先进性。 相似文献
11.
利用灰色关联度分析影响光伏发电量的关键气象环境因子,结合光伏电站历史数据,基于CAR模型建立了短期光伏发电量预测模型.以华中科技大学电力电子研究中心18 kW并网光伏电站资料进行预测试验,并通过调整模型参数获得了适合的模型,结果验证了该方法的有效性.应用结果表明,天气良好时,预测精度较高. 相似文献
12.
随着对能源利用效率要求的提高及日益激增的光伏数据,传统的光伏预测方法已逐渐丧失优势。为了更加准确地进行光伏预测,采用深度学习的框架,并利用循环神经网络(RNN)中最重要的一个结构——长短时记忆网络(LSTM)对时间序列的强大处理能力进行了智能算法建模。由于LSTM具有"遗忘"与"更新"功能,很好地解决了长序依赖问题,从而使光伏预测在精度上有了质的变化,预测速度也得到显著提升。 相似文献
13.
针对短期电力负荷预测的特点,提出了更适合负荷预测模型,对传统灰色预测模型的局限性进行了改进。采用三点平滑处理削弱了个别不理想数据对整个数据序列的影响,对GM(1,1)模型进行了残值修正,建立了针对后验差检验不合格情况下的新的GM(1,1)模型。通过实证分析与相对误差的比较,该模型具有良好的适应性,可大大提高预测的精度。 相似文献
14.
为了更有效地提取电力负荷数据中的潜藏特征与隐藏信息,提高电力负荷预测精度,针对负荷具有较强非线性、非平稳性和时序性特点,提出一种基于经验模态分解(empirical mode decomposition,EMD)、卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long... 相似文献
15.
负荷预测是智能电网安全领域的热门研究方向。智能技术应用到智能电网负荷预测领域取得了一系列研究成果。首先,对主流负荷预测技术进行总结;然后,将面向智能电网的传统负荷预测技术与近年来新兴的智能负荷预测技术进行对比,并详细介绍了两个领域中典型成果的基本原理和方法;最后,讨论了智能电网负荷预测技术仍需要解决的问题及未来的研究趋势。 相似文献
16.
《武汉理工大学学报》2021,(1):103-106
电力网络结构日益庞大,电力安全可靠运行难度不断增大,须提高电力负荷预测精度,以保证电力设备正常稳定运行。电力负荷变化具有非线性的特点,通过传统建立的模型难以精确预测电力负荷的变化,针对此难点,文中采用具有非线性特征的改进BP神经网络法进行短期负荷预测,在进行负荷预测算法时,为消除训练样本顺序的影响,将整个样本集替代单系列样本进行学习。选取某县城电力负荷历史数据作为样本,Matlab编程仿真,得出预测与期望结果比较接近,部分数据较精确,说明该算法具有一定的参考意义。 相似文献
17.
18.
19.
电力系统负荷预测的精度将直接影响电力系统的经济效益和用电的安全和稳定,短期电力负荷预测的重要组成部分.利用人工神经网络可以任意逼近非线性系统的特性,将其用于短期负荷预测.该文研究了在改进的BP网络中加入了动量项和构建输入网络时结合了同类型日思想的模糊映射,预测结果表明比标准BP算法具有更好的性能.同时,针对大量无法用精... 相似文献