首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
基于机器视觉的磁瓦表面缺陷检测研究对于改进磁瓦生产工艺、提升磁瓦生产效率有着重要意义.但在研究过程中,存在磁瓦含缺陷样本收集困难、不同缺陷样本数不均匀、缺陷类型单一等问题.本文提出一种使用高斯混合模型的深度卷积生成对抗网络(Gaussian Mixture Model Deep Convolution Generative Adversarial Networks,GMM-DCGANs)生成含缺陷磁瓦图像的方法.在深度卷积生成对抗网络的基础上,将生成图像的输入噪声潜在空间复杂化为高斯混合模型,从而提高图像生成网络对有限数量且具有类间及类内多样性训练样本的学习能力.实验结果表明,GMMDCGANs网络可以生成质量更好、缺陷类型更加丰富的磁瓦缺陷图像,并且生成的图像满足缺陷检测及分类的要求.  相似文献   

2.
余文勇  张阳  姚海明  石绘 《自动化学报》2022,48(9):2175-2186
基于深度学习的方法在某些工业产品的表面缺陷识别和分类方面表现出优异的性能,然而大多数工业产品缺陷样本稀缺,而且特征差异大,导致这类需要大量缺陷样本训练的检测方法难以适用.提出一种基于重构网络的无监督缺陷检测算法,仅使用容易大量获得的无缺陷样本数据实现对异常缺陷的检测.提出的算法包括两个阶段:图像重构网络训练阶段和表面缺陷区域检测阶段.训练阶段通过一种轻量化结构的全卷积自编码器设计重构网络,仅使用少量正常样本进行训练,使得重构网络能够生成无缺陷重构图像,进一步提出一种结合结构性损失和L1损失的函数作为重构网络的损失函数,解决自编码器检测算法对不规则纹理表面缺陷检测效果较差的问题;缺陷检测阶段以重构图像与待测图像的残差作为缺陷的可能区域,通过常规图像操作即可实现缺陷的定位.对所提出的重构网络的无监督缺陷检测算法的网络结构、训练像素块大小、损失函数系数等影响因素进行了详细的实验分析,并在多个缺陷图像样本集上与其他同类算法做了对比,结果表明重构网络的无监督缺陷检测算法有较强的鲁棒性和准确性.由于重构网络的无监督缺陷检测算法的轻量化结构,检测1 024×1 024像素图像仅仅耗时2.82 ms,...  相似文献   

3.
螺纹钢是土建工程中必不可少的建筑材料, 在轧制过程中因受轧辊磨损、钢坯质量等因素影响, 导致表面缺陷, 如不能及时发现就会生产出大量废品, 严重影响企业经济效益. 本文提出一种基于深度学习的螺纹钢缺陷检测方法, 通过生产现场工业相机采集螺纹钢图像, 对表面缺陷进行分类标记, 建立样本数据集, 利用深度卷积对抗生成网络DCGAN对数据集增强. 采用Faster RCNN构建螺纹钢缺陷检测模型, 利用迁移学习方法实现小样本螺纹钢表面缺陷检测, 通过对损失函数、优化方法、学习率、滑动平均参数的设置来评估优化螺纹钢缺陷检测模型. 实验表明所设计的方法具有较好的稳定性和实用性, 能有效地解决人工检测过程中效率低、误检率高等问题.  相似文献   

4.
针对证件生产过程中表面人工质检时存在的易疲劳、易漏检、检测效率低等难题,提出一种基于深度学习结合机器视觉的证件质量检测方法.首先采用摄像头采集证件表面图像,对证件照片图像进行仿射变换、滤波、特征提取等处理,然后根据个人信息生成打印标准图像,与证件表面图像进行图像配准、形态学相减和模版匹配操作,检测出证件表面的文字不正确、文字打印不完整、重影等缺陷,最后通过改进的YOLO目标检测网络检测出照片打印不完整、覆膜不完整、杂质、黑边等缺陷.  相似文献   

5.
液晶屏(liquid crystal display,LCD)和有机发光半导体(organic light-emitting diode,OLED)屏的制造工艺复杂,其生产过程的每个阶段会不可避免地引入各种缺陷,影响产品的视觉效果及用户体验,甚至出现严重的质量问题。实现快速且精确的缺陷检测是提高产品质量和生产效率的重要手段。本文综述了近20年来基于机器视觉的液晶屏/OLED屏缺陷检测方法。首先给出了液晶屏/OLED屏表面缺陷的定义、分类及其产生的原因和缺陷的量化指标;指出了基于视觉的液晶屏/OLED屏表面缺陷检测的难点。然后重点阐述了基于图像处理的缺陷检测方法,包括介绍图像去噪和图像亮度矫正的图像预处理过程;考虑到所采集的液晶屏/OLED屏图像存在纹理背景干扰,对重复性纹理背景消除和背景抑制法进行分析;针对Mura缺陷边缘模糊等特点,总结改进的缺陷分割方法;阐述提取图像特征并使用支持向量机、支持向量数据描述和随机森林算法等基于特征识别的缺陷检测方法。接着综述了基于深度学习的缺陷检测方法,根据产线不同时期的样本数量分别总结了无监督学习、缺陷样本生成、迁移学习和监督学习的方法,其中无监督学习从基于生成对抗网络和自编码器两个方面进行阐述。随后梳理了通用纹理表面缺陷数据集和模型性能的评价指标。最后针对目前液晶屏/OLED屏缺陷检测方法存在的问题,对未来进一步的研究方向进行了展望。  相似文献   

6.
基于深度学习的太阳能电池片表面缺陷检测方法   总被引:2,自引:0,他引:2  
目前对太阳能电池片的缺陷检测仍依赖人工完成,很难通过传统的CCD成像系统自动识别.作为一种多层神经网络学习算法,深度学习因对输入样本数据强大的特征提取能力而受到广泛关注.文中提出一种基于深度学习的太阳能电池片表面缺陷检测方法,该方法首先根据样本特征建立深度置信网络(DBN),并训练获取网络的初始权值;然后通过BP算法微调网络参数,取得训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测.实验表明DBN能较好地建立上述映射关系,且准确、快速地进行缺陷检测.  相似文献   

7.
王星  杜伟  陈吉  陈海涛 《控制与决策》2020,35(8):1887-1894
作为样本生成的重要方法之一,生成式对抗网络(GAN)可以根据任意给定数据集中的数据分布生成样本,但它在实际的训练过程中存在生成样本纹理模糊、训练过程不稳定以及模式坍塌等问题.针对以上问题,在深度卷积生成式对抗网络(DCGAN)的基础上,结合残差网络,设计一种基于深度残差生成式对抗网络的样本生成方法RGAN.该样本生成方法利用残差网络和卷积网络分别构建生成模型和判别模型,并结合正负样本融合训练的学习优化策略进行优化训练.其中:深度残差网络可以恢复出丰富的图像纹理;正负样本融合训练的方式可以增加对抗网络的鲁棒性,有效缓解对抗网络训练不稳定和模式坍塌现象的发生.在102 Category Flower Dataset数据集上设计多个仿真实验,实验结果表明RGAN能有效提高生成样本的质量.  相似文献   

8.
采用当前方法检测火电机组轴承表面细小缺陷未对高效分离背景图像和缺陷特征,导致检测细小缺陷时,检测所用的时间较长,得到的检测结果与实际不符,存在检测效率低和误检率高的问题。提出火电机组轴承表面细小缺陷深度检测方法。通过形态学滤波算法去除火电机组轴承表面图像中存在的噪声,利用曲线拟合方法实现火电机组轴承表面图像的背景估计,通过最大熵分割法火电机组轴承图像进行二值化处理,使背景图像和缺陷特征高效分离;在此基础上,火电机组轴承表面缺陷目标,通过深度置信网络在逐层学习模型的基础上实现火电机组轴承表面细小缺陷的检测。仿真结果表明,所提方法的检测效率高、误检率低。  相似文献   

9.
针对人工和传统自动化算法检测发动机零件表面缺陷中准确率和效率低下,无法满足智能制造需求问题,提出了一种基于深度学习的检测算法.以Faster R-CNN深度学习算法为算法框架,引入聚类理论来确定anchor方案,通过对比k-meansII和CURE聚类算法生成anchor对检测结果的影响,提出了基于聚类生成anchor方案的Faster R-CNN的零件表面缺陷检测算法,并引入多级ROI池化层结构,减少ROI池化过程中取整带来的偏差,实现高效并准确检测零件表面缺陷的目的.通过设计缺陷图像数据采集方案,建立了3种缺陷零件数据集,并验证了算法的性能.实验结果表明,该算法将缺陷检测的均值平均精度mAP从原算法的54.7%提高到97.9%,检测速度最快达到4.9 fps,能够满足智能制造的生产需求.  相似文献   

10.
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。  相似文献   

11.
织物缺陷在线检测是纺织行业面临的重大难题,针对当前织物缺陷检测中存在的误检率高、漏检率高、实时性不强等问题,提出了一种基于深度学习的织物缺陷在线检测算法。首先基于GoogLeNet网络架构,并参考其他分类模型的经典算法,搭建出适用于实际生产环境的织物缺陷分类模型;其次利用质检人员标注的不同种类织物图片组建织物缺陷数据库,并用该数据库对织物缺陷分类模型进行训练;最后对高清相机在织物验布机上采集的图片进行分割,并将分割后的小图以批量的方式传入训练好的分类模型,实现对每张小图的分类,以此来检测缺陷并确定其位置。对该模型在织物缺陷数据库上进行了验证。实验结果表明:织物缺陷分类模型平均每张小图的测试时间为0.37 ms,平均测试时间比GoogLeNet减少了67%,比ResNet-50减少了93%;同时模型在测试集上的正确率达到99.99%。说明其准确率与实时性均满足实际工业需求。  相似文献   

12.
在竹条表面缺陷检测中,竹条表面缺陷形状各异,成像环境脏乱,现有基于卷积神经网络(CNN)的目标检测模型面对这样特定的数据时并不能很好地发挥神经网络的优势;而且竹条来源复杂且有其他条件限制,因此没办法采集所有类型的数据,导致竹条表面缺陷数据量少到CNN不能充分学习.针对这些问题,提出一种专门针对竹条表面缺陷的检测网络.该...  相似文献   

13.
传统的压力管道内表面缺陷检测管道运行安全十分重要,目前检测方法对待检测管道的形状结构要求较高,检测方法低效耗时费力。设计了一种球形视频管道内缺陷检测机器人,通过搭载的高分辨率立体相机拍摄视管道内部频流,编制基于深度卷积神经网络软件对视频流进行带表面缺陷图片分选,采用Fast-RCNN快速区域卷积神经网络对管道缺陷进行标记,通过该标记可实现管道内部缺陷的安全评估,实验结果表明了该检测方法的有效性。  相似文献   

14.
针对输电线路无人机巡检图像中绝缘子自爆缺陷目标小而难以精准检测的问题,提出一种基于Faster R-CNN和改进的YOLO v3级联双模型的绝缘子自爆缺陷检测算法。首先,利用无人机巡检图像构建绝缘子串缺陷数据集,并对训练图像样本进行翻转预处理,增加样本数量,提高模型泛化能力,避免过拟合;然后,利用Faster R-CNN检测图像中的绝缘子串,再将检测到的绝缘子串图像送入改进的YOLO v3网络进行自爆缺陷的定位。改进的YOLO v3网络是在YOLO v3基础上借鉴FPN的思想,增加特征提取层并进行特征融合,充分利用深层特征和浅层特征;同时采用CIoU Loss函数作为损失函数,以解决边界框宽高比尺度信息。实验结果表明,本文算法在所构建的绝缘子缺陷数据集上的检测准确率达到91.2%,相比Faster R-CNN或YOLO v3等单模型检测算法提升了3.31个百分点以上,能有效实现无人机巡检中绝缘子自爆缺陷的检测,为输电线路智能化巡检故障诊断提供方法支持。  相似文献   

15.
为了解决小批量、多品种工业产品的表面质量检测问题,提出一种基于改进深度度量学习的缺陷检测算法.该算法对VGG16网络模型做改进,更有利于原始图像的隐空间映射.针对产品表面缺陷检测的任务,提出条件三元组损失函数以加强神经网络的拟合能力.同时,在隐空间中进行缺陷判定时,抛弃原始度量学习中基于KNN算法的归类方法,提出基于高...  相似文献   

16.
当前导光板表面缺陷仍主要由人工肉眼观察进行检测, 仅有少数生产厂家利用传统的图像处理方法进行检测. 由于导光板缺陷在高分辨率工业相机拍摄的图像成像下仍极其微小, 且不同缺陷的特征各异, 以及整张导光板自身的导光点分布密集、不均匀等纹理特点, 导致传统的图像处理检测方法需要经验丰富的视觉工程师进行大量的特征提取算法编程工作和昂贵的代码维护成本, 准确率低且稳定性差, 为此提出一种基于深度学习语义分割的缺陷检测方法. 该方法通过训练神经网络的方式来自主学习提取导光板缺陷特征从而避免繁杂的特征提取算法编程工作. 首先, 对搜集的导光板缺陷进行缺陷标记, 制作样本集; 其次, 利用迁移学习将预先训练好的金字塔场景解析网络(PSPNet)对标记样本进行再训练; 进而, 利用训练好的模型实现对导光板缺陷的检测; 由于单独的深度学习语义分割缺陷检测方法通常无法满足工业实际应用需求, 最后还需结合简单的机器视觉方法, 对深度学习语义分割方法检出的所有疑似缺陷区域进行二次判断筛选. 实验结果表明, 该方法针对亮点、暗点和划痕3种缺陷的检出率高达96%, 基本可以满足工业检测要求.  相似文献   

17.
口服液压盖过程,会出现压盖不良等情况,瓶盖可能会出现划痕、刮花、表面卷曲、压盖破损等缺陷,为保证食品药品安全必须在出厂前进行检测.在基于深度学习的口服液瓶压盖缺陷检测的研究过程中,使用传统卷积神经网络对口服液压盖缺陷数据集进行训练,需要进行人工标注,效率较低.为有效解决上述问题,设计出一种无监督学习的深度卷积去噪自编码...  相似文献   

18.
针对国防军工、电子信息等领域对多批次、小批量钣金零件快速、智能制造的需求,提出了一种基于卷积神经网络的少样本钣金件表面缺陷分类识别方法。首先基于卷积神经网络的网络架构,搭建出了经典的分类模型,并在实验中进行了参数修改,以达到实际生产中的表面缺陷检测要求;其次利用缺陷分割提取的方法获得卷积网络训练模型的样本集,并进行数据增强。实验结果表明,该模型的准确度可达97.02%;最后利用窗口滑移检测方法使待检测零件与模型进行对比,实现了对缺陷的分类和缺陷位置的标记。经实验验证,该方法的准确性和实时性均可满足实际工业生产要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号