首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 785 毫秒
1.
胡洋  张梦雨  陈飞  刘佳毅 《现代矿业》2019,35(8):116-119
试验用极贫铁矿石铁品位为13.90%,有害元素磷含量为0.86%,磁性铁占总铁的46.04%,主要以磁赤铁矿、磁铁矿形式存在,磁赤铁矿、磁铁矿以半自形变晶结构为主,嵌布粒度大于0.1 mm的超过75%,约有5%的磁赤铁矿的嵌布粒度小于0.05 mm。为确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,矿石采用3阶段磨选流程处理,在一段磨矿细度为-0.076 mm占38.5%、弱磁选磁场强度为115 kA/m,二段磨矿细度为-0.076 mm占74%、弱磁选磁场强度为115 kA/m,三段磨矿细度为-0.043 mm占92%、弱磁选磁场强度为115 kA/m的情况下,获得了铁品位为60.12%、铁回收率为40.22%的铁精矿,铁精矿硫、磷含量均较低,满足产品质量要求。  相似文献   

2.
马艺闻 《金属矿山》2014,43(6):65-68
内蒙古大坝沟超贫磁铁矿石铁品位仅15.68%,且有21.81%的铁以硅酸铁形式存在,同时有少量磁铁矿因呈微细粒包裹于石榴石、黑云母中而难以解离。为了给该矿石的开发利用提供依据,对其进行了选矿工艺研究。结果表明:采用块矿干选-闭路高压辊磨-粉矿干选抛尾工艺处理该超贫磁铁矿石,可以预先抛除产率达54.16%、铁品位为7.71%的合格尾矿,从而使矿石铁品位由15.72%提高到25.19%,而磁性铁损失率仅4.68%;预选精矿经阶段磨矿-细筛分级-阶段弱磁选,可以获得铁品位为65.52%、作业铁回收率为78.14%的合格铁精矿,其对原矿的铁回收率为57.39%。  相似文献   

3.
采用(1+1)盐酸分解磁性铁,考查溶解温度和溶解时间的影响,建立(1+1)盐酸分解—重铬酸钾容量法测定超贫磁铁矿中磁性铁含量的分析方法。将此方法用于标准物质和实际样品中磁性铁的测定,标准物质分析结果的相对误差在0.43%~3.20%之间,实际样品重复分析结果的相对偏差在0.84%~1.12%,符合规范要求,适合推广应用于大批量超贫磁铁矿中磁性铁的分析。  相似文献   

4.
为合理开发利用河北某超贫磁铁矿,进行了干式预选和预选精矿磨选试验。试验结果表明:矿石细碎后采用CCXGY细粒干选机预选,可抛弃产率为71.37%,磁性铁含量仅为0.20%的废石。预选精矿经过1段磨矿-2次磁选工艺流程,得到了全铁品位为66.28%的合格铁精矿,对原矿回收率为46.93%,其中磁性铁回收率达到97.01%,为合理利用此铁矿资源提供了技术依据。  相似文献   

5.
针对黑龙江省某含钒超贫磁铁矿,对原矿化学成分、铁物相和矿石结构构造进行分析,再采用MLA、扫描电镜、电子探针等先进手段对矿物组成、主要矿物的嵌布特征进行详细研究,发现矿石中全铁含量12.40%(磁性铁占67.34%),V2O5含量0.186%,矿石中磁铁矿和钛铁矿、磁黄铁矿紧密共生,对选矿指标产生影响。通过选矿试验研究,在磁场强度条件试验和不同磨矿细度磁选工艺试验研究基础上,对铁精矿产品进行化学分析和有用成分回收情况分析,推荐最佳选矿工艺流程及指标:原矿在一次磨矿细度-200目含量95%的条件下,经过两次磁选,可获得全铁含量64.18%、回收率61.25%(磁性铁含量63.91%、回收率90.58%)的铁精矿,铁精矿中V2O5得到富集,含量为0.96%,回收率为61.08%。研究结果为该矿开发利用提供参考。  相似文献   

6.
内蒙古某贫磁铁矿石为含磁铁矿石英岩,矿石铁品位为34.21%,杂质成分主要为Si O2。矿石中铁主要以磁铁矿形式存在,铁在磁铁矿中分布率为57.94%,其次为硅酸铁,占总铁的21.25%。为给该矿石的合理预选工艺提供参考,进行了高压辊磨—磁选预选抛尾试验。结果表明:破碎至-30 mm矿石经高压辊磨闭路破碎至-3 mm后湿式预选指标优于高压辊磨闭路破碎至-5 mm后干式预选指标,-3 mm产品在磁场强度为151.27 k A/m条件下弱磁选,获得的预选精矿铁品位为43.02%、回收率为83.21%,磁性铁品位为29.81%、回收率为99.17%,可抛除产率为33.79%的废石。矿石可磨度对比试验结果表明,在获得相同的磨矿细度时,高压辊磨破碎后矿石所需要的磨矿时间更短,且高压辊磨破碎粒度越细,矿石的可磨度越好。  相似文献   

7.
河北某低品位磁铁矿石全铁含量为14.60%,磁性铁为7.81%,为合理利用该资源,分别采用湿式预选—阶段磨矿—全磁选工艺流程和粗粒湿式预选—阶段磨矿—细筛—阶段弱磁选流程就矿石中磁铁矿的回收进行了选矿试验。试验分别获得了铁品位为66.19%、铁回收率为53.34%和铁品位为66.14%、铁回收率为53.40%的铁精矿,根据试验结果最终推荐湿式预选—阶段磨矿—细筛—阶段弱磁选流程为合理利用该极贫磁铁矿切实可行的选别流程。  相似文献   

8.
为了综合回收内蒙古固阳县某矿区矿石中的铁和磷,针对铁和磷的赋存状态和自然嵌布特征,对矿石进行了较系统的工艺矿物学研究。研究表明,矿石工业类型属高磷贫磁铁矿矿石,推荐回收的工艺矿物为磁铁矿和磷灰石。磁铁矿和磷灰石磨矿时易于形成单体,采用破碎—干式磁选—干选精矿磨矿—湿式磁选—湿选尾矿再磨—浮选流程处理矿石,可获得全铁品位6620%、全铁回收率6361%、磁性铁品位6300%、磁性铁收率9770%的铁精矿,以及P2O5品位2852%、回收率8475%的磷精矿。该工艺流程较简单,技术指标理想,具有较好的应用和推广前景。  相似文献   

9.
为了综合回收河北某超贫钒钛磁铁矿资源,根据矿石性质,采用原矿弱磁收铁、铁粗精矿再磨后精选,铁粗选尾矿过强磁,强磁精矿再磨后用磁重联合收钛,强磁尾矿选磷,磷浮选作业一粗一扫四次精选。试验获得的铁精矿中TFe品位为67.53%、回收率为42.66%、磁性铁回收率为95.55%,磷精矿中P_2O_5品位为35.69%、回收率为84.62%,钛精矿中Ti品位为23.10%,回收率为7.62%,实现了钒钛磁铁矿资源的综合回收。  相似文献   

10.
正江西省地调院施工的"江西南城县横圳铁多金属矿普查"钻探情况喜人,首钻ZK319、ZK315见磁铁矿。ZK319和ZK315钻孔设计孔深300m。ZK319钻孔进尺近200m,见8m多厚磁铁矿;ZK315钻孔目前进尺100多米,在10m处见约2.5m厚的磁铁矿。经前期勘查化学分析结果表明,矿区矿石全铁含量为25%~45%、磁性铁含量最高可达40%。该项目以铁多金属矿勘查为主,工作面积为10.6km~2。  相似文献   

11.
辽宁某低品位铁尾矿可回收元素为铁,品位为22.32%,主要含铁矿物为磁铁矿,其次为硅酸铁,赤铁矿含量较少.原矿在一段磨矿细度为-0.074mm占93.24%条件下,经磨矿-强磁选-弱磁选-反浮选处理后,可获得铁精矿全铁品位为63.83%,回收率为55.32%,实现了该铁尾矿的有用组分再回收,为此类铁尾矿的有效利用提供了...  相似文献   

12.
赵羚伯  赵冰  高鹏  董再蒸 《金属矿山》2022,51(7):170-174
辽宁新都黄金选金焙烧氰化尾渣总氰含量719 mg/kg,尾渣中铁矿物主要以赤铁矿的形式存在,TFe品位为35.08%。采用预氧化—蓄热还原同步提铁技术处理氰化尾渣,可实现在氰化物高效分解的同时回收铁精矿。研究结果表明,将氰化尾渣样品预先在550℃的空气气氛下焙烧25 min,可将氰化尾渣中的总氰含量降至检出限以下,同时完成对氰化尾渣的蓄热。将预氧化处理后的尾渣在还原温度560℃、还原时间30 min、CO浓度40%、总气量500 m L/min的条件下进行蓄热还原试验。焙烧产品使用棒磨机磨至-0.038 mm占82.02%,后在磁场强度143.28k A/m条件下进行弱磁选,最终得到TFe品位58.94%,回收率89.93%的铁精矿。该工艺不仅将氰化物有效分解,还实现了氰化尾渣中铁矿物的高效回收利用。  相似文献   

13.
对澳大利亚某铜尾矿进行了选矿试验研究,采用浮选—磁选联合工艺流程,综合回收尾矿中的硫、铁元素。试验结果表明:采用新型XT-01作为硫铁矿捕收剂,可获得硫品位为49.80%、回收率为92.58%的硫精矿;浮硫尾矿采用湿式弱磁选机磁选,获得了铁品位为64.11%、全铁回收率为45.91%的铁精矿,实现了铜尾矿中硫、铁的综合回收。   相似文献   

14.
羊拉铜矿尾矿资源二次利用选矿试验研究   总被引:2,自引:1,他引:1  
羊拉铜矿尾矿中含铜0.22%、含铁15.31%,为了能够提高资源的综合利用率,现对该尾矿中的铜、铁进行二次回收利用。尾矿中铜主要以硫化铜矿物为主,铁主要以硅酸铁矿物为主,分布率高达58%,磁铁矿等强磁性矿物含量较低。因此,在保证经济和技术的条件下,试验采用了浮选—磁选联合流程对该尾矿中的铜铁资源进行再回收利用。最终采用浮选流程获得了铜品位为1.43%、回收率为30%左右的较好指标,为后续的工艺提供了原料。再对浮选尾矿进行一段弱磁选,得到铁品位为60.87%,回收率为6.47%的铁精矿产品,为企业增加了额外的经济效益。  相似文献   

15.
为实现钢铁企业含锌冶金尘泥低碳环保高效的资源化利用,对铁含量为30.38%、锌含量为4.79%的含锌冶金尘泥进行还原焙烧-磁选分离研究。结果表明,该含锌冶金尘泥直接磁选难以实现锌铁有效分离,在焙烧温度950℃、焙烧时间20 min、磁选强度100 mT等条件下,磁选精矿铁回收率为79.50%、铁含量为57.00%、锌含量为2.45%,磁选尾矿锌回收率为71.06%、锌含量为9.92%、铁含量为16.81%,锌铁分离效果较好。磁选产物中精矿主要以单质Fe为主,尾矿主要由SiO2与ZnO等物相组成。  相似文献   

16.
白云鄂博西矿白云石型低品位铁矿TFe含量为20.55%,铁主要赋存于磁铁矿中,其占有率为70.02%。为充分开发利用该矿石,拟采用磁滚筒干式磁选抛尾对该矿石进行预处理,减少矿石处理量,然后采用粗磨—弱磁选和细磨—弱磁选工艺进行选别,提高铁精矿品位。系统考察了磁辊筒转速、抛尾粒度、抛尾段数、磨矿细度等因素对干式抛尾—粗磨—弱磁选和细磨—弱磁选工艺的影响。结果表明,通过干式抛尾—粗磨—弱磁选、细磨—弱磁选工艺可获得TFe品位为68.09%、TFe回收率为56.90%、MFe回收率为79.84%的铁精矿。研究结果为白云鄂博西矿白云石型低品位铁矿石的开发利用提供技术借鉴和参考。  相似文献   

17.
云南大红山铁尾矿再选新工艺研究   总被引:2,自引:0,他引:2  
朱运凡  杨波  卢琳 《矿冶》2012,21(1):35-38
云南大红山铁尾矿,矿物粒度细、铁品位低,铁矿物主要为赤铁矿。采用传统的选矿工艺难以得到有效回收。本试验采用强磁预选抛尾和悬振锥面选矿机精选的磁选—重选联合工艺,有效地回收尾矿中的铁矿物,最终尾矿铁品位降至10.45%,产出的铁精矿品位达到54.02%,回收率为34.68%。  相似文献   

18.
东鞍山烧结厂浮选尾矿TFe品位为22.82%,FeO含量为9.87%,SiO2的含量为51.24%,S和P含量较低,均为0.03%,属于低硫、低磷、高硅型铁尾矿。此外,该尾矿-0.038 mm粒级含量高达56.44%,同时铁矿物主要集中在该粒级中,铁分布率达到67.62%。为了实现该铁尾矿的高效回收利用,本试验采用搅拌磨磨矿—弱磁选—强磁粗选—强磁精选—反浮选流程开展了系统的试验研究。结果表明:在搅拌磨磨矿细度为?0.038 mm占95%、弱磁选磁感应强度95 kA/m、强磁粗选磁场磁感应强度796 kA/m、强磁精选磁场磁感应强度398 kA/m的条件下,可获得TFe品位为38.20%、TFe回收率为63.51%的混合磁选精矿指标;将混合磁选精矿在矿浆温度40 ℃、矿浆pH值为11.5、淀粉用量1000 g/t、CaO用量900 g/t、粗选捕收剂TD-2用量600 g/t、一次精选捕收剂TD-2用量为300 g/t、二次精选捕收剂TD-2用量为300 g/t的条件下进行反浮选,闭路试验可获得TFe品位为62.34%、TFe作业回收率为55.10%的浮选精矿。全流程TFe回收率为35.00%,综合尾矿TFe品位为17.01%。试验结果可为东鞍山浮选尾矿中的铁矿物高效选矿回收提供指导。   相似文献   

19.
酒钢选厂强磁选工艺产生的铁尾矿品位较高,约为21.50%。尾矿大量堆存不仅占用土地、污染环境,还浪费了大量铁资源。为了研究利用悬浮磁化焙烧技术处理该类尾矿的可行性,缓解酒钢原料不足的矛 盾,对该尾矿进行了预富集—悬浮磁化焙烧—磁选—反浮选扩大试验研究。试验结果表明:①酒钢尾矿经一段弱磁—两段强磁预富集工艺分选,获得了铁品位26.01%、回收率82.71%的预富集精矿,预富集精矿中含铁 矿物主要为赤铁矿、磁铁矿和菱铁矿,脉石矿物主要为石英、白云石和重晶石。②预富集精矿在还原温度530 ℃、CO流量2.0 m3/h、N2流量3.0 m3/h、处理量99 kg/h的适宜悬浮焙烧工艺参数下,稳定试验连续运行了 48 h,取得了磁选管磁选铁精矿平均铁品位51.41%、铁回收率72.39%的技术指标。③酒钢总尾矿采用预富集—悬浮焙烧—磁选—反浮选全流程处理,最终可获得铁品位58.67%、铁回收率57.82%、SiO2含量6.48%的铁精 矿,综合尾矿铁品位12.00%,指标良好。该试验结果为酒钢下一步对该类尾矿资源的回收利用提供了技术依据。  相似文献   

20.
为实现钢铁行业含锌冶金尘泥绿色环保高效的资源化利用,对铁含量为30.38%、锌含量为4.79%的含锌冶金尘泥进行微波还原焙烧-磁选分离试验研究。试验结果表明,含锌冶金尘泥未焙烧直接磁选以及常规马弗炉还原焙烧-磁选的方式均难以较好实现含锌冶金尘泥中锌铁的有效分离;采用微波马弗炉还原焙烧-磁选的方式,在微波焙烧温度为700 ℃、焙烧时间为15 min、磁场强度为150 mT等试验条件下,磁选的精矿指标:铁回收率为88.67%、铁含量为57.84%、锌含量为2.73%,磁选的尾矿指标:锌回收率为61.72%、锌含量为9.85%、铁含量为9.54%,锌铁分离效果较好。磁选产物中精矿的物相主要以单质Fe为主,尾矿的物相主要以SiO2与ZnO为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号