首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinematic analysis is one of the key issues in the research domain of parallel kinematic manipulators. It includes inverse kinematics and forward kinematics. Contrary to a serial manipulator, the inverse kinematics of a parallel manipulator is usually simple and straightforward. However, forward kinematic mapping of a parallel manipulator involves highly coupled nonlinear equations. Therefore, it is more difficult to solve the forward kinematics problem of parallel robots. In this paper, a novel three degrees-of-freedom (DOFs) actuation redundant parallel manipulator is introduced. Different intelligent approaches, which include the Multilayer Perceptron (MLP) neural network, Radial Basis Functions (RBF) neural network, and Support Vector Machine (SVM), are applied to investigate the forward kinematic problem of the robot. Simulation is conducted and the accuracy of the models set up by the different methods is compared in detail. The advantages and the disadvantages of each method are analyzed. It is concluded that ν-SVM with a linear kernel function has the best performance to estimate the forward kinematic mapping of a parallel manipulator.  相似文献   

2.
Polynomial learning networks are proposed in this paper to solve the forward kinematic problem for a planar three-degree-of-freedom parallel manipulator with revolute joints. These networks rapidly learn complex nonlinear functions based on a database mapping. The networks learn the forward kinematics of the manipulator based on examples of the transformation. The obtained networks are then used to follow a test trajectory. For comparison purposes, a neural network approach using backpropagation is also used for this problem. The results show that, in this application, polynomial networks learn much faster and exhibit less error than neural networks  相似文献   

3.
Parallel robotic manipulators are complex mechanical systems that lead to involved kinematic and dynamic equations. Hence, the design of such systems is in general not intuitive, and advanced simulation and design tools specialized for this type of architecture are highly desirable. This article discusses the kinematic simulation and computer-aided design of three-degree-of-freedom spherical parallel manipulators with either prismatic or revolute actuators. The kinematic analysis of spherical parallel manipulators is first reviewed. Solutions for the direct and inverse kinematic problems are given, and the expressions for the singularity loci are then introduced. The determination of the workspace of this type of manipulator is also addressed. Finally, a computer package developed specifically for the CAD of spherical parallel manipulators is presented. This package allows the interactive analysis of manipulators of arbitrary architecture including the representation of the workspace, the representation of singularities, and the graphic animation of trajectories specified either by the direct or the inverse kinematic module. It can be used for the design of any spherical parallel three-degree-of-freedom actuated mechanism, which can find many applications in high-performance robotic systems. © 3995 John Wiley & Sons, Inc.  相似文献   

4.
A floating point genetic algorithm is proposed to solve the forward kinematic problem for parallel manipulators. This method, adapted from studies in the biological sciences, allows the use of inverse kinematic solutions to solve forward kinematics as an optimization problem. The method is applied to two 3-degree-of-freedom planar parallel manipulators and to a 3-degree-of-freedom spherical manipulator. The method converges to a solution within a broader search domain compared to a Newton-Raphson scheme. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
In this paper, three numerical methods are presented to solve the forward kinematics of a three DOF actuator-redundant hydraulic parallel manipulator. It is known, that on the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, whose closed-form solution derivation is a real challenge. This issue is of great importance noting that the forward kinematics solution is a key element in closed loop position control of parallel manipulators. The proposed methods, namely the Neural Network Estimation, the Quasi-closed Solution, and the Taylor series approximation, are using mainly numerical computations, with different ideas to solve the problem in hand. The latter two methods are proposed for the first time in literature to solve the forward kinematics of a parallel manipulator. These methods are compared in detail and the advantages or the disadvantages of each method in computing the forward kinematic map of the given mechanism is discussed. It is shown that a 4th order Taylor series approximation to the problem provides a good compromise for practical applications compared to that of other methods considered in this paper.  相似文献   

6.
7.
Optimizing the system stiffness and dexterity of parallel manipulators by adjusting the geometrical parameters can be a difficult and time-consuming endeavor, especially when the variables are diverse and the objective functions are excessively complex. However, optimization techniques that are based on artificial intelligence approaches can be an effective solution for addressing this issue. Accordingly, this paper describes the implementation of genetic algorithms and artificial neural networks as an intelligent optimization tool for the dimensional synthesis of the spatial six degree-of-freedom (DOF) parallel manipulator. The objective functions of system stiffness and dexterity are derived according to kinematic analysis of the parallel mechanism. In particular, the neural network-based standard backpropagation learning algorithm and the Levenberg–Marquardt algorithm are utilized to approximate the analytical solutions of system stiffness and dexterity. Subsequently, genetic algorithms are derived from the objective functions described by the trained neural networks, which model various performance solutions. The multi-objective optimization (MOO) of performance indices is established by searching the Pareto-optimal frontier sets in the solution space. Consequently, the effectiveness of this method is validated by simulation.  相似文献   

8.
9.
The computational efficiency of inverse dynamics of a manipulator is important to the real-time control of the system. For serial manipulators, the recursive Newton-Euler method has been proven to be the most efficient. However, for more general manipulators, such as serial manipulators with closed kinematic loops or parallel manipulators, it must be modified accordingly and the resultant computational efficiency is degraded. This article presents a computationally efficient scheme based on the virtual work principle for inverse dynamics of general manipulators. The present method uses a forward recursive scheme to compute velocities and accelerations, the Newton-Euler equation to calculate inertia forces/torque, and the virtual work principle to formulate the dynamic equations of motion. This method is equally effective for serial and parallel manipulators. For serial manipulators, its computational efficiency is comparable to the recursive Newton-Euler method. For parallel manipulators or serial manipulators with closed kinematic loops, it is more efficient than the existing methods. As an example, the computations of inverse dynamics (including inverse kinematics) of a general Stewart platform require only 842 multiplications, 511 additions, and 12 square roots.  相似文献   

10.
Singularity loci of planar parallel manipulators with revolute actuators   总被引:6,自引:0,他引:6  
The determination of the singularity loci of planar parallel manipulators is addressed in this paper. The inverse kinematics of two kinds of planar parallel manipulators (a two-degree-of-freedom manipulator and a three-degree-of-freedom manipulator) are first computed and their velocity equations are then derived. At the same time, the branches of the manipulators are distinguished by the introduction of a branch index Ki. Using the velocity equations, the singularity analysis of the manipulators is completed and expressions which represent the singularity of the manipulators are obtained. A polynomial form of the singularity loci is also derived. For the first type of singularity of parallel manipulators, the singularity locus is obtained by finding the workspace limits of the manipulators. For the second type of singularity, the loci are obtained through the solution of nonlinear algebraic equations obtained from the velocity analysis. Finally, the graphical representation of the complete singularity loci of the manipulators is illustrated with examples. The algorithm introduced in this paper allows the determination of the singularity loci of planar parallel manipulators with revolute actuators, which has been elusive to previous approaches.  相似文献   

11.
Kinematic analysis of a 3-PRS parallel manipulator   总被引:5,自引:0,他引:5  
Although the current 3-PRS parallel manipulators have different methods on the arrangement of actuators, they may be considered as the same kind of mechanism since they can be treated with the same kinematic algorithm. A 3-PRS parallel manipulator with adjustable layout angle of actuators has been proposed in this paper. The key issues of how the kinematic characteristics in terms of workspace and dexterity vary with differences in the arrangement of actuators are investigated in detail. The mobility of the manipulator is analyzed by resorting to reciprocal screw theory. Then the inverse, forward, and velocity kinematics problems are solved, which can be applied to a 3-PRS parallel manipulator regardless of the arrangement of actuators. The reachable workspace features and dexterity characteristics including kinematic manipulability and global dexterity index are derived by the changing of layout angle of actuators. Simulation results illustrate that different tasks should be taken into consideration when the layout angles of actuators of a 3-PRS parallel manipulator are designed.  相似文献   

12.
Inverse kinematics is a fundamental problem in robotics. Past solutions for this problem have been realized through the use of various algebraic or algorithmic procedures. In this paper the use of feedforward neural networks to solve the inverse kinematics problem is examined for three different cases. A closed kinematic linkage is used for mapping input joint angles to output joint angles. A three-degree-of-freedom manipulator in 3D space is used to test mappings from both cartesian and spherical coordinates to manipulator joint coordinates. A majority of the results have average errors which fall below 1% of the robot workspace. The accuracy indicates that neural networks are an alternate method for performing the inverse kinematics estimation, thus introducing the fault-tolerant and high-speed advantages of neural networks to the inverse kinematics problem.This paper also shows the use of a new technique which reduces neural network mapping errors with the use of error compensation networks. The results of the work are put in perspective with a survey of current applications of neural networks in robotics.  相似文献   

13.
Translational parallel manipulators are parallel manipulators wherein the end‐effector performs only spatial translations. This paper presents a new family of translational parallel manipulators. The manipulators of this family are independent constraint manipulators. They have three limbs that are topologically identical and have no rotation singularity. The limbs of these manipulators feature five one‐degree‐of‐freedom kinematic pairs in series. Four joints are revolute pairs and the remaining one, called T‐pair, is a kinematic pair that can be manufactured in different ways. In each limb, three adjacent revolute pairs have parallel axes and the remaining revolute pair has an axis that is not parallel to the axes of the other revolute pairs. The mobility analysis of the manipulators of this new family is addressed by taking into account two different choices for the actuated pairs. One of the results of this analysis is that the geometry of a translational parallel manipulator free from singularities can be defined for a particular choice of the actuated pairs. © 2002 Wiley Periodicals, Inc.  相似文献   

14.
A Stewart platform is a six degrees of freedom parallel manipulator composed of six variable-length legs connecting a fixed base to a movable plate. Like all parallel manipulators, Stewart platforms offer high force/torque capability and high structural rigidity in exchange for small workspace and reduced dexterity. Because the solution for parallel manipulators' forward kinematics is in general much harder than their inverse kinematics, a typical control strategy for such manipulators is to specify the plate's pose in world coordinates and then solve the individual leg lengths. The accuracy of the robot critically depends on accurate knowledge of the device's kinematic parameters. This article focuses on the accuracy improvement of Stewart platforms by means of calibration. Calibration of Stewart platforms consists of construction of a kinematic model, measurement of the position and orientation of the platform in a reference coordinate frame, identification of the kinematic parameters, and accuracy compensation. A measurement procedure proposed in this article allows a great simplification of the kinematic identification. The idea is to keep the length of the particular leg, whose parameters are to be identified, fixed while the other legs change their lengths during the measurement phase. By that, redundant parameters can be eliminated systematically in the identification phase. The method also shows the estimation of each leg's parameters separately because the measurement equations are fully decoupled, which results in a drastical reduction of the computational effort in the parameter identification. Simulation results assess the performance of the proposed approach. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
This work reports on the kinematics of a series-parallel manipulator built with two zero-torsion tangential parallel manipulators assembled in series connection. Although this mechanism has been widely studied, there are some topics that must be revised, e.g. the mobility analysis here reported shows that the robot under study is not precisely a six degrees of freedom spatial mechanism as it has been commonly considered. Furthermore, the traditional hexagonal coupler platform is replaced with a three-dimensional platform which yields a mechanism with a more general topology. The forward and inverse displacement analyses of the robot are obtained in semi-closed form solutions based on simple closure equations which are generated upon the coordinates of three points embedded to the moving platform while the input–output equations of velocity and acceleration of the semi-general series-parallel manipulator are easily derived by resorting to reciprocal-screw theory. A case study is included in order to show the application of the method of kinematic analysis.  相似文献   

16.
We consider the inverse kinematic problem for mobile manipulators consisting of a nonholonomic mobile platform and a holonomic manipulator on board the platform. The kinematics of a mobile manipulator are represented by a driftless control system with outputs together with the associated variational control system. The output reachability map of the driftless control system determines the instantaneous kinematics, while the output reachability map of the variational system plays the role of the analytic Jacobian of the mobile manipulator. Relying on a formal analogy between the kinematics of stationary and mobile manipulators we exploit the extended Jacobian construction in order to design a collection of extended Jacobian inverse kinematics algorithms for mobile manipulators. It has been proved mathematically and confirmed in computer simulations that these algorithms are capable of efficiently solving the inverse kinematic problem. Moreover, a choice of the Jacobian extension may lay down some guidelines for the platform‐manipulator motion coordination. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
This article provides an estimation model for calibrating the kinematics of manipulators with a parallel geometrical structure. Parameter estimation for serial link manipulators is well developed, but fail for most structures with parallel actuators, because the forward kinematics is usually not analytically available for these. We extend parameter estimation to such parallel structures by developing an estimation method where errors in kinematical parameters are linearly related to errors in the tool pose, expressed through the inverse kinematics, which is usually well known. The method is based on the work done to calibrate the MultiCraft robot. This robot has five linear actuators built in parallel around a passive serial arm, thus making up a two-layered parallel-serial manipulator, and the unique MultiCraft construction is reviewed. Due to the passive serial arm, for this robot conventional serial calibration must be combined with estimation of the parameters in the parallel actuator structure. The developed kinematic calibration method is verified through simulations with realistic data and real robot kinematics, taking the MultiCraft manipulator as the case. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Robot arm reaching through neural inversions and reinforcement learning   总被引:1,自引:0,他引:1  
We present a neural method that computes the inverse kinematics of any kind of robot manipulators, both redundant and non-redundant. Inverse kinematics solutions are obtained through the inversion of a neural network that has been previously trained to approximate the manipulator forward kinematics. The inversion provides difference vectors in the joint space from difference vectors in the workspace. Our differential inverse kinematics (DIV) approach can be viewed as a neural network implementation of the Jacobian transpose method for arm kinematic control that does not require previous knowledge of the arm forward kinematics. Redundancy can be exploited to obtain a special inverse kinematic solution that meets a particular constraint (e.g. joint limit avoidance) by inverting an additional neural network The usefulness of our DIV approach is further illustrated with sensor-based multilink manipulators that learn collision-free reaching motions in unknown environments. For this task, the neural controller has two modules: a reinforcement-based action generator (AG) and a DIV module that computes goal vectors in the joint space. The actions given by the AG are interpreted with regard to those goal vectors.  相似文献   

19.
This paper deals with the development of a new adaptive control scheme for parallel kinematic manipulators (PKMs) based on Rrbust integral of the sign of the error (RISE) control theory. Original RISE control law is only based on state feedback and does not take advantage of the modelled dynamics of the manipulator. Consequently, the overall performance of the resulting closed-loop system may be poor compared to modern advanced model-based control strategies. We propose in this work to extend RISE by including the nonlinear dynamics of the PKM in the control loop to improve its overall performance. More precisely, we augment original RISE control scheme with a model-based adaptive control term to account for the inherent nonlinearities in the closed-loop system. To demonstrate the relevance of the proposed controller, real-time experiments are conducted on the Delta robot, a three-degree-of-freedom (3-DOF) PKM.  相似文献   

20.
《Advanced Robotics》2013,27(6-7):657-687
In this paper the kinematic and Jacobian analysis of a macro–micro parallel manipulator is studied in detail. The manipulator architecture is a simplified planar version adopted from the structure of the Large Adaptive Reflector (LAR), the Canadian design of the next generation of giant radio telescopes. This structure is composed of two parallel and redundantly actuated manipulators at the macro and micro level, which both are cable-driven. Inverse and forward kinematic analysis of this structure is presented in this paper. Furthermore, the Jacobian matrices of the manipulator at the macro and micro level are derived, and a thorough singularity and sensitivity analysis of the system is presented. The kinematic and Jacobian analysis of the macro–micro structure is extremely important to optimally design the geometry and characteristics of the LAR structure. The optimal location of the base and moving platform attachment points in both macro and micro manipulators, singularity avoidance of the system in nominal and extreme maneuvers, and geometries that result in high dexterity measures in the design are among the few characteristics that can be further investigated from the results reported in this paper. Furthermore, the availability of the extra degrees of freedom in a macro–micro structure can result in higher dexterity provided that this redundancy is properly utilized. In this paper, this redundancy is used to generate an optimal trajectory for the macro–micro manipulator, in which the Jacobian matrices derived in this analysis are used in a quadratic programming approach to minimize performance indices like minimal micro manipulator motion or singularity avoidance criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号