首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A range of coloured electronic or mixed ionic–electronic glasses has been evidenced in the Na2O–MoO3–P2O5 system. The properties of these glasses have been studied along different composition lines corresponding either to a fixed Na2O content or a constant Mo/P ratio. An EPR spectroscopy investigation of these glasses has allowed to determine the Mo5+ ion percentages in these materials. The electrical properties of these glasses have been studied by impedance spectroscopy, and the electronic and ionic contributions have been evaluated. The properties of these sodium glasses have been compared with those of lithium glasses with the same compositions.  相似文献   

2.
We report on the experimental results of frequency dependent a.c. conductivity and dielectric constant of SrTiO3 doped 90V2O5–10Bi2O3 semiconducting oxide glasses for wide ranges of frequency (500–104 Hz) and temperature (80–400 K). These glasses show very large dielectric constants (102–104) compared with that of the pure base glass (≈102) without SrTiO3 and exhibit Debye-type dielectric relaxation behavior. The increase in dielectric constant is considered to be due to the formation of microcrystals of SrTiO3 and TiO2 in the glass matrix. These glasses are n-type semiconductors as observed from the measurements of the thermoelectric power. Unlike many vanadate glasses, Long's overlapping large polaron tunnelling (OLPT) model is found to be most appropriate for fitting the experimental conductivity data, while for the undoped V2O5–Bi2O3 glasses, correlated barrier hopping conduction mechanism is valid. This is due to the change of glass network structure caused by doping base glass with SrTiO3. The power law behavior (σac=A(ωs) with s<1) is, however, followed by both the doped and undoped glassy systems. The model parameters calculated are reasonable and consistent with the change of concentrations (x).  相似文献   

3.
A series of glasses in the xPb3O4–(1−x)P2O5 (red lead phosphate) (RLP) system with ‘x' varying from 0.075 to 0.4 were prepared by the single-step melt quenching process from Pb3O4 and NH4H2PO4. The optical absorption spectra of these glasses have been recorded in the ultraviolet region from 200 to 400 nm and the fundamental absorption edges have been identified. The optical band gap Eopt values have been determined for all the glasses using the known theories. The (Eopt) values vary from 4.90 to 3.21 eV the highest being 4.57 eV, corresponding to the most stable glass of x=0.225. The absorption edge is attributed to the indirect transitions and the origin of the Urbach energy ΔE is suggested to be thermal vibrations. These glasses promise as potential candidates for application in optical technology compared to simple xPbO–(1−x)P2O5 (lead phosphate) (LP) glasses.  相似文献   

4.
We report on the properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 solid solution thin films for ferroelectric non-volatile memory applications. The solid solution thin films fabricated by modified metalorganic solution deposition technique showed much improved properties compared to SrBi2Ta2O9. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 600°C and grain size was found to be considerably increased for the solid solution compositions. The film properties were found to be strongly dependent on the composition and annealing temperatures. The measured dielectric constant of the solid solution thin films was in the range 180–225 for films with 10–50% of Bi3TaTiO9 content in the solid solution. Ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films were significantly improved compared to SrBi2Ta2O9. For example, the observed remanent polarization (2Pr) and coercive field (Ec) values for films with 0.7SrBi2Ta2O9–0.3Bi3TaTiO9 composition, annealed at 650°C, were 12.4 μC/cm2 and 80 kV/cm, respectively. The solid solution thin films showed less than 5% decay of the polarization charge after 1010 switching cycles and good memory retention characteristics after about 106 s of memory retention. The improved microstructural and ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films compared to SrBi2Ta2O9, especially at lower annealing temperatures, suggest their suitability for high density FRAM applications.  相似文献   

5.
Transparent glasses in the system (100−x)Li2B4O7x(SrO---Bi2O3---Nb2O5) (10≤x≤60) (in molar ratio) were fabricated by a conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via X-ray powder diffraction (XRD) and differential thermal analyses (DTA) respectively. Glass–ceramics embedded with strontium bismuth niobate, SrBi2Nb2O9 (SBN) nanocrystals were produced by heat-treating the as-quenched glasses at temperatures higher than 500 °C. Perovskite SBN phase formation through an intermediate fluorite phase in the glass matrix was confirmed by XRD and transmission electron microscopy (TEM). Infrared and Raman spectroscopic studies corroborate the observation of fluorite phase formation. The dielectric constant (r) and the loss factor (D) for the lithium borate, Li2B4O7 (LBO) glass comprising randomly oriented SBN nanocrystals were determined and compared with those predicted based on the various dielectric mixture rule formalism. The dielectric constant was found to increase with increasing SBN content in LBO glass matrix.  相似文献   

6.
Glasses of various compositions in the system (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (10  x  60, in molar ratio) were prepared by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as-quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X-ray powder diffraction studies. Glass composites comprising strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat-treated at 783 K/6 h) confirm the presence of rod shaped crystallites of SBVN embedded in Li2B4O7 glass matrix. The optical transmission spectra of these glasses and glass nanocrystal composites of various compositions were recorded in the wavelength range 190–900 nm. Various optical parameters such as optical band gap (Eopt), Urbach energy (ΔE), refractive index (n), optical dielectric constant and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied.  相似文献   

7.
采用微弧氧化技术在 TiCP/Ti6Al4V 复合材料表面制备陶瓷膜。在NaAlO2和NaH2PO2两种溶液体系中通过添加不同添加剂 NaOH、C10H12CaNa2N2O8·4H2O和Na2SiO3, 研究电解液组分对陶瓷膜组织、耐蚀性和耐磨性的影响。结果表明: 在NaH2PO2电解液体系中生成的膜层由金红石型和锐钛矿型TiO2相组成, 而在NaAlO2体系中除了生成TiO2外, 还生成了Al2TiO5和γ-Al2O3。添加NaOH可以加快微弧氧化反应速率, 添加NaAlO2和Na2SiO3有利于提高膜层的硬度, NaH2PO2溶液体系中形成的膜层厚度是NaAlO2溶液体系的2~3倍。 在NaAlO2和NaH2PO2电解液体系中生成的膜层, 其耐腐蚀性能排序均为: Na2SiO3>C10H12CaNa2N2O8·4H2O>NaOH。在NaAlO2电解液体系中生成的膜层的耐磨性能排序为: Na2SiO3>NaOH>C10H12CaNa2N2O8·4H2O, 而在NaH2PO2电解液体系中生成的膜层的耐磨性能排序为: Na2SiO3>C10H12CaNa2N2O8·4H2O>NaOH。TiCP/Ti6Al4V复合材料经过微弧氧化处理后, 耐磨性和耐蚀性均优于基体, 在NaH2PO2+Na2SiO3电解液中生成的微弧氧化膜的耐蚀性最好, 耐磨性也较好, 其腐蚀电流密度较钛基复合材料基体降低约2个数量级, 因此综合性能最好。  相似文献   

8.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

9.
This paper presents the optical absorption and luminescence properties of Er3+ doped mixed alkali borosilicate glasses: 59.5SiO2 · 20B2O3 · xLi2O · (20 − x)Na2O · 0.5Er2O3 and 59.5SiO2 · 20B2O3 · xLi2O · (20 − x)K2O · 0.5Er2O3, with x = 0, 4, 8, 12, 16 and 20 mol%. The variations of Judd–Ofelt intensity parameters (Ω2, Ω4, and Ω6), hypersensitive transition intensities, total radiative transition probability (AT), radiative lifetimes (τR), integrated absorption cross-sections (Σ) and stimulated emission cross-sections (σp) as a function of x are discussed in detail. The changes in Ω2 and intensities of hypersensitive transitions are attributed to optical basicity changes in the host glass matrix, which leads to variations in the covalency of the Er–O bond. The luminescence properties are reported for certain transitions, and the emission cross-section is high at x = 8–12 in the case of lithium sodium glass, whereas in lithium potassium glass it is high at x = 8.  相似文献   

10.
Eu3+-activated scintillating glasses with molar compositions of 35SiO2–15B2O3–30Ln2O3–20AlF3 (Ln = Y, La, Gd, Lu) have been prepared. The effects of Ln3+ ions on the density, transmission, photoluminescence and radioluminescence have been studied. The glasses have high density, ranging from 4.0 to 6.1 g/cm3 in the order of Y < La < Gd < Lu. Gd-containing glass exhibits a much higher light yield than the other glasses. The effect of complete substitution of fluorine by oxygen on the scintillation properties is also investigated.  相似文献   

11.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

12.
The microstructure, electrical properties, dielectric characteristics, and DC-accelerated aging behavior of the ZnO–V2O5–MnO2 system sintered were investigated for MnO2 content of 0.0–2.0 mol% by sintering at 900 °C. For all samples, the microstructure of the ZnO–V2O5–MnO2 system consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the ZnO–V2O5 system was found to restrict the abnormal grain growth of ZnO. The nonlinear properties and stability against DC-accelerated aging stress improved with the increase of MnO2 content. The ZnO–V2O5–MnO2 system added with MnO2 content of 2.0 mol% exhibited not only a high nonlinearity, in which the nonlinear coefficient is 27.2 and the leakage current density is 0.17 mA/cm2, but also a good stability, in which %ΔE1 mA = −0.6%, %Δ = −26.1%, and %Δtan δ = +22% for DC-accelerated aging stress of 0.85E1 mA/85 °C/24 h.  相似文献   

13.
Doping and electrical characteristics of in-situ heavily B-doped Si1−xyGexCy (0.22<x<0.6, 0<y<0.02) films epitaxially grown on Si(100) were investigated. The epitaxial growth was carried out at 550°C in a SiH4–GeH4–CH3SiH3–B2H6–H2 gas mixture using an ultraclean hot-wall low-pressure chemical vapor deposition (LPCVD) system. It was found that the deposition rate increased with increasing GeH4 partial pressure, and only at high GeH4 partial pressure did it decrease with increasing B2H6 as well as CH3SiH3 partial pressures. With the B2H6 addition, the Ge and C fractions scarcely changed and the B concentration (CB) increased proportionally. The C fraction increased proportionally with increasing CH3SiH3 partial pressures. These results can be explained by the modified Langmuir-type adsorption and reaction scheme. In B-doped Si1−xyGexCy with y=0.0054 or below, the carrier concentration was nearly equal to CB up to approximately 2×1020 cm−3 and was saturated at approximately 5×1020 cm−3, regardless of the Ge fraction. The B-doped Si1−xyGexCy with high Ge and C fractions contained some electrically inactive B even at the lower CB region. Resistivity measurements show that the existence of C in the film enhances alloy scattering. The discrepancy between the observed lattice constant and the calculated value at the higher Ge and C fraction suggests that the B and C atoms exist at the interstitial site more preferentially.  相似文献   

14.
The partial substitution of Zn2+ for Ag+ in Ag4P2O7 leads to the formation of a wide glassy domain of composition [Ag4P2O7] (1−y) [Zn2P2O7] (y) with 0.20y0.87. The introduction of AgI in these materials results in a new series of glasses of formula [(Ag4P2O7)(1−y) (Zn2P2O7)(y)] (1−X) [AgI] (x), which domain for the composition y = 0.25 corresponds to 0x 0.64. The structure as well as the thermal and electrical properties of these materials are compared with those of the [AgPO3] (1−X) [AgI] (x) and [Ag4P2O7] (1−x) [AgI] (x) glasses.  相似文献   

15.
Optical transitions of Er3+ ion in two tellurite glasses of molar composition 75TeO2:12ZnO:10Na2O:2PbO:1Er2O3 and 75TeO2:12ZnO:10Na2O:2GeO2:1Er2O3 were investigated. The measured absorption and emission spectra were analysed by Judd–Ofelt and McCumber theories, in order to obtain radiative transition rates and stimulated emission cross sections. It was found that these glasses have high and broadband absorption and stimulated emission cross sections at 1.5 μm. For the metastable 4I13/2 level, by comparing the measured lifetime with the calculated radiative decay time, quantum efficiency higher than 80% was found.  相似文献   

16.
Compositional dependence of ionic conductivity in the system ZrO2–Y2O3–Yb2O3 was investigated in the temperature range 573–873 K using the complex impedance technique. It was shown that the conductivity decreases with increasing concentration of Yb2O3 in the system ZrO2–Y2O3–Yb2O3. Analyzing the experimental data according to the classic Arrhenius equation showed that such an experimental phenomenon can be attributed to the tighter association between Yb3+ and oxygen vacancy, compared with that between Y3+ and oxygen vacancy, which hinders the migration of oxygen vacancy in the materials.  相似文献   

17.
Bi2O3·B2O3 glasses doped with rare-earth oxides (RE2O3) (RE3+ = La3+, Pr3+, Sm3+, Gd3+, Er3+ and Yb3+) were prepared by the melting–quenching method. The relationships between composition and properties were demonstrated by IR, DSC, XRD and SEM analysis. The results show that the network structure resembles that of undoped Bi2O3·B2O3 glass, composing of [BO3], [BO4] and [BiO6] units. RE2O3 stabilizes the glass structure as a modifier. Transition temperature (Tg) increases linearly with cationic field strength (CFS) of RE3+. La2O3, Pr2O3, Sm2O3 and Gd2O3 are benefit to promote the formation of BiBO3 crystal. When Er2O3 and Yb2O3 are introduced, respectively, the main crystal phase changes to Bi6B10O24. Transparent surface crystallized samples are obtained by reheating at 460–540 °C for 5 h. In this case, needle like BiBO3 crystal or rare-earth-doped BiBO3 crystal (PrxBi1−xBO3 and GdxBi1−xBO3) are observed, which is promising for non-linear optical application.  相似文献   

18.
A new series of 20Bi(PO3)3–10Sr(PO3)2–35BaF2–35MgF2 doped with Yb3+ is introduced for fiber and waveguide laser applications. The stimulated emission cross-section σemi, which was found to be 1.37 pm2 at the lasing wavelength of 996 nm, is the highest one among fluorophosphate glasses. It has been found that an extremely high gain coefficient of G = 1.65 ms pm4 and high quantum efficiency of η = 93% for 1 wt.% Yb2O3 doped systems. The various concentration effects on laser performance properties including minimum pumping intensity Imin, the minimum fraction of excited ions βmin and the saturation pumping intensity Isat are analyzed as a function of Yb2O3 concentration. Those results obtained in current system had advantage over some fluorophosphate glasses reported.  相似文献   

19.
This study reports a new, simple and effective pre-calcined method for fabrication BaO–TiO2–B2O3–SiO2 low temperature co-fired ceramics (LTCC) at a sintering temperature below 900 °C, and with dielectric losses (tan δ) lower than 2 × 10−3. The research results have shown that the addition of 2–5 wt% Al2O3 could easily eliminate the porosity of the glass-ceramics because of the excellent wetting behavior between alumina and the BaO–B2O3–SiO2 glass liquid phase in the low temperature co-fired ceramic system.  相似文献   

20.
This short paper reports both the photoluminescence and the lifetime measurements of a prominent emission transition (5D07F2) of Eu3+ both in the presence and absence of the codopant rare earth ion (Dy3+) in an optical glass of the composition (79−x)TeO2+6AlF3+15LiF+xLn2O3 as a function of temperature down to 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号