首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The residuals of the bamboo pulping wastewater were analysed systematically. The COD (chemical oxygen demand) decreased significantly by adding appropriate coagulant (1.5 kg/m3 10% Al2 (SO4)3 as coagulant and 2 mg/L anionic PAM as coagulant aid) to the effluent in secondary sedimentation tank. The study found that hydrolytic bacteria in primary sedimentation tank and balancing tank may increase the ratio of BOD/COD and promote the release of ammonia nitrogen (NH3‐N), which was benefit to further degradation of organic pollutants by aerobic biological treatment. Through optimizing biochemical process and adjusting contents of nitrogen, phosphorus, and mineral elements, the effects of wastewater treatment has been greatly enhanced and the quality of discharged water could met the new national standard GB3544‐2008.  相似文献   

2.
对汽提后的炼油厂含硫废水进行了水解——两级好氧生物膜处理试验研究 ,结果表明 ,当总停留时间为 1 7h,进水 COD平均为 1 0 0 0~ 2 0 0 0 mg/L时 ,处理后出水 COD小于 2 0 0 mg/L,氨氮小于 4 0 mg/L,酚、硫化物也都低于国家排放标准。对工艺特点分析表明 :各段生物膜中含有不同的优势菌种 ,使整个工艺处理负荷高 ,出水水质稳定  相似文献   

3.
Fermentation of food industry wastewater   总被引:1,自引:0,他引:1  
Treatment of wastewater formed during production of citric acid and fodder yeast was carried out under dynamic conditions on a laboratory scale in an anaerobic upflow biofilter. The bioreactor was run at a temperature of 36°C. Methane fermentation of wastewater from citric acid production proceeded with a high yield. Removal of 73% COD and 73% BOD5 was achieved at a biofilter loading rate of 3.16 kg COD/m3 d and a 48-h hydraulic retention time of the wastewater. In addition, 65 and 70% reductions of COD and BOD5, respectively, were attained with respect to wastewater from fodder yeast production at a biofilter loading rate of 3.00 kg COD/m3 d and a 60-h hydraulic retention time. The methanogenesis process yielded 0.32 m3 CH4/kg of removed COD for citric acid wastewater and 0.34 m3 CH4/kg of removed COD for wastewater from the fodder yeast production plant. Microbiological reduction amounting to 50% of sulphates was found to occur in wastewater from the fodder yeast production plant at an initial sulphate concentration of about 4500 mg SO42−/dm3.As determined by Oleszkiewicz's formula, the specific coefficients of the reaction rates, k, were 2.90 and 2.02 kg COD/m3 d depending on the type of wastewater. Consequently, it has been shown that the anaerobic upflow biofilter is suitable for treating wastewater produced during molasses processing. Attention should also be drawn to its unique and simple construction and the relatively low power demand required to operate this unit. Wastewater recirculation was not required in the unit.  相似文献   

4.
This work aimed to assess the technical and energetic feasibility of a passively aerated laboratory-scale trickling filter, configured as a two-stage system, to produce urban wastewater (UWW) reusable in agriculture. The trickling filter was fed continuously with high-strength UWW at four hydraulic retention times (HRTs), that is, 10, 5, 2 and 1 day, corresponding to organic loading rates (OLRs) of 0.1, 0.2, 0.5 and 0.9 kg COD/m3/d, respectively. The results revealed a good performance in organic load removal and nitrification at the four HRTs. The trickling filter showed high organic pollutant removal efficiencies of up to 93%, 94% and 98% for chemical oxygen demand (COD), BOD5 and total suspended solid (TSS), respectively, as well as high ammonia nitrogen removal above 96% at the shortest HRT of 1 day. All physicochemical parameters were significantly lower than the allowable limits set out in ISO 16075 for category C (non-food crop irrigation) irrigation water. The reuse of treated UWW in irrigation led to germination indexes and growth parameters of triticale (Triticosecale Wittm.) almost equal to those obtained using tap water. Energy use was found to be about 0.2754 kWh/m3 of treated wastewater, making it competitive with trickling filter plants reported in the literature. The simplicity and energy efficiency of the developed trickling filter system, combined with its capacity for almost full nitrification, make it appealing for sewage treatment in small communities in developing countries.  相似文献   

5.
Biological treatability of an integrated dairy plant wastewater containing a small fraction of whey-washwaters mixture has been experimentally investigated. Emphasis has been placed on the assessment of the initially inert fraction, S1 and soluble residual microbial products, Sp. Parallel batch experiments have been conducted to determine the kinetic and stoichiometric coefficients of the degradable COD. The results have shown that the wastewater tested had practically no initially inert fraction, but generated residual microbial products amounting to 6–7% of the initial degradable COD. The results obtained have been fed into a set of equations describing the steady state operation of an activated sludge system with sludge recycle and a relationship indicating the variation of the total effluent COD with the sludge age has been defined for the wastewater tested. It is noted that effluent COD cannot be biologically reduced below 85 mg l−1, regardless of the sludge age, due to generation of residual fractions.  相似文献   

6.
The two‐chambered microbial fuel cell (MFC) was designed and used for studying the efficiency of the real wastewater treatment from a non‐steroidal anti‐inflammatory pharmaceutical plant as well as from synthetic wastewater containing diclofenac sodium (DS). The removal of the contaminants was expressed regarding chemical oxygen demand (COD) removal, as measured by spectrophotometry experiments. Moreover, the effect of two different types of the cathode on current characteristics and COD removal was investigated. This research showed that the Pt‐coated Ti cathode could lead to higher efficiency of both power density and COD removal. In this case, the results indicated that the maximum power density (Pmax) was 20.5 and 6.5 W/m3 and the maximum COD removal was 93 and 78% for MFCs using real and synthetic wastewater, respectively.  相似文献   

7.
Anaerobic ammonium oxidation, nitrification and removal of COD was studied at ambient temperature (18 °C ± 3) in an anoxic/aerobic granular sludge reactor during 390 days. The reactor was operated in a sequencing fed batch mode and was fed with acetate and ammonium containing medium with a COD/N ratio of 0.5 [g COD/gN]. During influent addition, the medium was mixed with recycled effluent which contained nitrate in order to allow acetate oxidation and nitrate reduction by anammox bacteria. In the remainder of the operational cycle the reactor was aerated and controlled at a dissolved oxygen concentration of 1.5 mg O2/l in order to establish simultaneous nitritation and Anammox. Fluorescent in-situ hybridization (FISH) revealed that the dominant Anammox bacterial population shifted toward Candidatus “Brocadia fulgida” which is known to be capable of organotrophic nitrate reduction. The reactor achieved stable volumetric removal rates of 900 [g N2-N/m3/day] and 600 [g COD/m3/day]. During the total experimental period Anammox bacteria remained dominant and the sludge production was 5 fold lower than what was expected by heterotrophic growth suggesting that consumed acetate was not used by heterotrophs. These observations show that Anammox bacteria can effectively compete for COD at ambient temperatures and can remove effectively nitrate with a limited amount of acetate. This study indicates a potential successful route toward application of Anammox in granular sludge reactors on municipal wastewater with a limited amount of COD.  相似文献   

8.
The removal efficiencies of nitrogen, phosphorus and COD from waste water were examined using sand filtration systems with Phragmites australis (Cav.) Trin. ex. Steudel. The quality of effluent waters from the system with plant were far better than those from the one without plant, implying Phragmites could incorporate nitrogen and phosphorus into its tissues and promote phosphorus absorption onto the sand by the release of oxygen from the roots. The P-pot provided with the influent containing 198 mg l- of total nitrogen and 21 mg l-1 of total phosphorus had the highest biomass of Phragmites. Harvestable above-ground biomass accounted for about 3.5 kg m-2 and removable nitrogen and phosphorus accounted for 69 and 6 g m-2 respectively.The removal rates of total nitrogen and phosphorus in the system with Phragmites receiving variable amounts of COD were almost at the same level and also much better than those of the systems without plant, implying that the different COD concentrations in the influent media do not impair the removal efficiencies of nitrogen and phosphorus. Also Phragmites was found to resist COD concentration as high as 128 mg l-1, and signs of clogging were not detected in this system throughout the experiment.  相似文献   

9.
As part of a study to provide data for the design of abattoir activated sludge plants laboratory-scale completely mixed reactors were fed with abattoir wastewater, continuously and intermittently using an 8 h feed, 16 h starvation pattern. The standard biokinetic coefficients and the effluent concentrations of COD. TKN and phosphorus were measured for the continuously fed reactors at sludge ages of 5, 10 and 20 days. Sludge settleability and filterability were also measured.Values obtained for the biokinetic coefficients Y and kd were within the range of values reported for other substrates but k was lower and kx higher. Effluent TKN and phosphorus concentrations were low at the three sludge ages, but the COD concentration was high at sludge ages of 5 and 10 days. In contrast to the data reported for many other wastewaters the effect of sludge age on the SVI was small. Intermittent feeding was tested at a single sludge age of 10 days. It produced an effluent and sludge with better and more stable characteristics than those from the continuously fed reactor at the same sludge age.  相似文献   

10.
对某制革废水处理厂和下游综合污水处理厂的进出水水质和沿程工艺段进行采样分析,得出制革废水处理厂出水NH3-N和TN平均浓度分别为77. 32、160. 93 mg/L,综合污水处理厂出水COD平均浓度为106. 8 mg/L,其中大部分是难降解COD,出水TN平均浓度为89. 93 mg/L,出水COD和TN是影响污水处理厂出水达标排放的主要指标。在小试中投加500 mg/L葡萄糖(以COD浓度计)时脱氮效果明显增强,综合污水处理厂出水TN浓度可稳定在15 mg/L以下。利用臭氧、活性焦和四相催化氧化深度处理综合污水处理厂二级出水,发现臭氧对COD基本没有去除效果,活性焦和四相催化氧化都能使COD浓度降至50 mg/L以下,但四相催化氧化去除单位COD的成本约是活性焦的29%、再生活性焦的49%。  相似文献   

11.
A laboratory scale anaerobic filter packed with synthetic high surface area trickling filter media was used to treat a low strength domestic wastewater averaging 288 mg 1−1 COD. The filter was operated for 60 days after reaching steady-state at 20, 25, 35°C at a loading rate of 0.02 lb COD ft−3 day−1 and 24 h hydraulic retention time. Filter effluent BOD5 averaged 38 mg 1−1 providing an average removal rate of 79%, and effluent COD averaged 78 mg 1−1, corresponding to a 73% removal rate. Removal efficiencies showed very little sensitivity to daily fluctuations in influent wastewater quality. The filter performance at 25 and 35°C was not significantly different, but BOD and TSS removal efficiency declined a: 20°C. Gas production averaged 0.027 ft−3 of gas per ft3 of influent wastewater, or 1.875 ft3 of gas per pound of influent COD. Gas composition averaged 30% nitrogen, 65% methane, and 5% carbon dioxide. Ammonia nitrogen and sulfides both increased during treatment. It is concluded that the anaerobic filter is a promising candidate for treatment of low strength wastewaters and that post treatment for sulfides and ammonia may be necessary.  相似文献   

12.
High strength wastewater (7600 mg 1−1 phenolics) from the H-coal liquefaction process was diluted and fed to anaerobic, methane-producing cultures. Total phenolic concentrations of 150 and 300 mg 1−1 were added to 50 ml semicontinuous cultures with hydraulic retention times of 12.5, 16.7 and 25 days. The rates of methane production and effluent concentrations of three fermentable phenolics (phenol, p-cresol and m-cresol) were monitored over a 188-day period. After acclimation to the wastewater, stable periods followed during which each of the six cultures removed essentially all of these fermentable phenolics. The duration of the stable periods decreased with increasing phenolic mass loading rates. m-Cresol was the first phenolic to appear in the effluent and its presence served as the first indicator of reduced phenolic removal capability. The effluent m-cresol concentrations from cultures receiving 300 mg 1−1 total phenolics followed simple washout curves suggesting that its degradation stopped abruptly. Later, p-cresol and ultimately phenol appeared in the effluents from the cultures which received the highest phenolic mass loadings.  相似文献   

13.
Biological treatment processes that utilise wind‐aerated lagoons have proved popular for small communities because of their negligible sludge production. Scottish Water has recently constructed one such system, known as the Aero‐Fac (North Dakota, USA), and this paper reports on an intensive 12‐month study designed to both monitor the lagoon performance and establish the key design parameters. Over the monitoring period the final effluent complied with both Scottish Environmental Protection Agency discharge consents and Scottish Water performance guarantees for biochemical oxygen demand and total suspended solids, which averaged 9 and 28 mg/L, respectively. The lagoons showed an accelerated growth of algae during the summer months, but this did not adversely affect the final effluent suspended solids. The lagoons also achieved a faecal coliform removal of around 3.4 log and an average effluent ammonia of 7.6 mg/L. However, the ammonia removal was seasonal with a better performance in the summer months, which probably reflects take‐up by the growing algal population over this period. No sludge was wasted from the lagoon over the monitoring period yet it accumulated only sparingly in the lagoons, mainly around the inlet of the primary lagoon. The estimated per capita sludge accumulation rate was 0.0047 m3/person/year. The total capital costs of the scheme were £1.65 million, and of this the lagoon cost was £840 000. The capital costs of £420 per capita make this more expensive than other, similar options, but plant operating costs are significantly reduced.  相似文献   

14.
A laboratory-scale two-phase anaerobic digestion system was used to treat a palm oil mill effluent (POME) containing around 63,000 mg l?1 COD. Phase separation was accomplished through control of the hydraulic retention times of two reactors operated in series. Acid and methane phase biokinetic coefficients were evaluated. Steady state parameters indicate good process stability with high gas yields.  相似文献   

15.
以中浓度有机废水———屠宰废水为例,采用压力生物接触工艺来探讨处理该废水的可行性.结果表明:此法反应速度快,当废水COD 为1000 ~1600mg/L 时,COD 容积负荷达14kg/(m3 .d) 以上,出水水质COD一般在200mg/L以下,再经一般的后续处理,可达二级排放标准.本法具有占地面积小,基建费用低,运行管理方便及出水水质稳定等优点  相似文献   

16.
K.K. Chin  K.K. Wong 《Water research》1981,15(9):1087-1092
Effluent from the refining of crude palm oil was subjected to physical-chemical and biological treatment. An inclined corrugated parallel plates oil separator spaced at 25 mm was used with hydraulic loading rates of 0.2, 0.5 and 1 m3 m−2-h. 91% oil and grease removal could be achieved at 0.2 m3 m−2-h. Coagulation and flocculation carried out on batch samples after oil and grease separation revealed that with 100 mg l−1 alum addition BOD was reduced from 3500 to 450 mg l−1 and COD from 8600 to 750 mg l−1 after 30 min settling. Higher doses of alum and doses of polyelectrolyte, activated carbon and sodium hypochloride did not yield significant additional reductions in BOD and COD. Batch dissolved air flotation (DAF) removed 90% of the suspended solids with 2.7% solids in the thickened sludge at an A/S ratio of 0.014. This method yielded the similar effluent quality as the inclined corrugated plates oil and grease separator. Field data from a DAF plant compare closely with data achieved in this study. Activated sludge treatment on the effluent from the oil separator yielded a BOD of 46 mg l−1 with a loading rate of 0.3 g BOD (g MLVSS)−1-day. Total dissolved solids (TDS) remained high and removal through coagulation and chemical oxidation brought the COD level down to around 180 mg l−1. Biokinetic coefficients Y, kdK and K3 were found to be 0.85 g VSS (g BOD)−1, 0.016 day−1, 0.12 g BOD (g VSS)−1-day and 510 mg l−1 BOD respectively.  相似文献   

17.
Four laboratory-model upflow anaerobic fixed film reactors (AFFR 1, 2, 3 and 4) treating landfill leachate were subject to identical volumetric organic load (7 kg COD m−3 d−1) and hydraulic retention time (3d), but the contents in each unit were continuously recirculated for 10 months at four different velocities, respectively, of 21, 66, 680 and 3063 cm h−1. The objective was to assess the effects of such mixing velocities (ν) on COD removal efficiencies (E), mean cell residence time (MCRT) and substrate utilization rate (U expressed as g COD removed d−1 g−1 VSS). The results showed that the relationships between E and ν and MCRT and ν were inverted U-shaped curves. The two middle reactors (AFFR 2 and 3) had near-optimum velocities (ν2 and ν3) with maximum E values of 88–89%. AFFR 4 had a high value of ν scouring biofilm on the biorings, resulting in higher concentrations of SS, VSS and COD in the effluent. All four reactors had nearly similar values of U (1.85–2.14 g COD d−1 g−1 VSS). The value of ν1 (AFFR 1) was too low to enhance performance and ν4 was too high to retain the biomass. The optimum recycle velocity, under the test conditions, was in the range of 66–680 cm h−1.  相似文献   

18.
Petros Grafias 《Water research》2010,44(9):2773-2780
A hybrid process comprising biological degradation in a vertical-flow constructed wetland (CW) and electrochemical oxidation over boron-doped diamond electrodes to decolorize, mineralize and detoxify a leachate from olive pomace processing (OPL) was investigated. Two alternative treatment schemes were compared: According to the first treatment scheme, OPL was treated by electrochemical oxidation followed by treatment in a constructed wetland pilot unit (CW-A). The second scheme comprised of treatment in a constructed wetland followed by electrochemical treatment (CW-B). The constructed wetlands units were planted with Phragmites australis (reeds) and were fed intermittently at organic loadings between 5 and 15 g COD m−2 d−1 and a residence time of 3 d. Electrochemical oxidation (EO) was performed for 360 min at 20 A.Treatment of OPL in the wetland at 15 g COD m−2 d−1 led to mean COD and color reduction of 86% and 77%, respectively; the wetland effluent with a COD of about 800 mg L−1 was polished electrochemically for 360 min after which the overall COD and color removal of the combined process (i.e. CW-B/EO) was around 95%, while the final effluent was not toxic against the marine bacteria Vibrio fischeri.Electrochemical oxidation of the original OPL at COD values between 6250 and 14 100 mg L−1 led to moderate COD and color reduction (i.e. less than 40%) through zero order kinetics. When this was coupled to constructed wetland post-treatment (i.e. EO/CW-A), the overall COD and color removal was 81% and 58%, respectively. The decreased efficiency may be assigned to the increased toxicity of the electrochemically treated effluent which was only partially removed in the natural treatment system.  相似文献   

19.
The wastewater from baker's yeast production contains above‐average concentrations of organic pollutants (25 000 mg/L total chemical oxygen demand, TCOD), nutrients (1500 mg/L Ntot, 100 mg/L Ptot) and sulphate (2900 mg/L SO42?). Baker's yeast wastewater with a flow rate of 190 m3/day was treated in a mesophilic anaerobic/anoxic continuous stirred tank reactor (CSTR) system. At the expense of the reduction of trimethylglycine (or betaine‐component of sugar‐beet molasses) to other nitrogen‐containing compounds, it was possible to re‐oxidize the sulphides to elemental sulphur, remove them from the wastewater and increase biogas production. Therefore, the average removal efficiency in the anaerobic/anoxic system was 79% by TCOD, 100% by SO42? in which the concentration of sulphides in the effluent did not exceed 50 mg/L. The application of this combined anaerobic/anoxic system to a full‐scale treatment plant supported biogas production up to 1300 m3/day, and the purification of wastewater was feasible without the use of granular sludge.  相似文献   

20.
Soil aquifer treatment of artificial wastewater under saturated conditions   总被引:2,自引:0,他引:2  
A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L−1-135 mg L−1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d−1-1780 mg d−1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号