首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The polarized absorption and luminescence properties of Nd3+ doped isostructural LiNbO3, MgO:LiNbO3 and LiTaO3 nonlinear bulk single crystals are reported. Pump-probe experiments associated with the Judd-Ofelt approach are used to estimate two types of room temperature cross sections: polarized emission cross sections of the dominant 4F3/24I1//2 transition near 1085 and 1093 nm and polarized excited-state absorption cross sections in the same spectral domain and in the green spectral range corresponding to self frequency doubling. Self frequency-doubling results are also given in Nd:LiNbO3 and Nd:MgO:LiNbO3 versus sample temperature.  相似文献   

2.
The c-axis-oriented aluminum nitride (AlN) films were deposited on z-cut lithium niobate (LiNbO3) substrates by reactive RF magnetron sputtering. The crystalline orientation of the AlN film determined by x-ray diffraction (XRD) was found to be dependent on the deposition conditions such as substrate temperature, N2 concentration, and sputtering pressure. Highly c-axis-oriented AlN films to fabricate the AlN/LiNbO3-based surface acoustic wave (SAW) devices were obtained under a sputtering pressure of 3.5 mTorr, N2 concentration of 60%, RF power of 165 W, and substrate temperature of 400°C. A dense pebble-like surface texture of c-axis-oriented AlN film was obtained by scanning electron microscopy (SEM). The phase velocity and the electromechanical coupling coefficient (K2) of SAW were measured to be about 4200 m/s and 1.5%, respectively. The temperature coefficient of frequency (TCF) of SAW was calculated to be about -66 ppm/°C  相似文献   

3.
The variety of the shapes of isolated domains, revealed in congruent and stoichiometric LiTaO3 and LiNbO3 by chemical etching and visualized by optical and scanning probe microscopy, was obtained by computer simulation. The kinetic nature of the domain shape was clearly demonstrated. The kinetics of domain structure with the dominance of the growth of the steps formed at the domain walls as a result of domain merging was investigated experimentally in slightly distorted artificial regular two-dimensional (2D) hexagonal domain structure and random natural one. The artificial structure has been realized in congruent LiNbO3 by 2D electrode pattern produced by photolithography. The polarization reversal in congruent LiTaO3 was investigated as an example of natural domain growth limited by merging. The switching process defined by domain merging was studied by computer simulation. The crucial dependence of the switching kinetics on the nuclei concentration has been revealed.  相似文献   

4.
An equivalent network approach is described for the analysis of surface-acoustic-wave interdigital transducers. Circuit parameters can he theoretically determined by applying the finite-element method to an infinite array. In this approach, all the effects of piezoelectric perturbation, mechanical perturbation, and energy storage are taken into account, To show the validity and usefulness of this approach, examples are computed for both single- and double-electrode interdigital transducers and one-port resonators. For single- and double-electrode interdigital transducers on 128°Y-X LiNbO3, X-112°Y LiTaO3,45°X-Z Li2B4O7, and ST-X quartz substrates, the dependence of excitation characteristics on electrode thickness and metallization ratio is investigated in detail. For a 128°Y-XLiNbO 3 substrate, frequency responses of various one-port resonators are also investigated  相似文献   

5.
Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol–gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.  相似文献   

6.
High-Q, bulk acoustic wave composite resonators based on a symmetric layer sequence of SiO2-AlN-SiO2 sandwiched between electrodes have been developed. Acoustic isolation was achieved by means of deep silicon etching to obtain membrane type thin film bulk acoustic wave resonators (TFBARs). Three different device versions were investigated. The SiO2 film thicknesses were varied (0 nm, 70 nm, 310 nm, and 770 nm) while the piezoelectric AlN film had a constant thickness of 1.2 μm. The sputter-deposited AlN film grown on the amorphous, sputter-deposited SiO2 layer exhibited a d33,f of 4.0 pm/V. Experimental results of quality factors (Q) and coupling coefficients (kt2) are in agreement with finite element calculations. A Q of 2000 is observed for the first harmonic of the 310 nm oxide devices. The most intense resonance of the 770 nm oxide device is the third harmonic reaching Q factors of 1450. The temperature drift reveals the impact of the SiO2 layers, which is more pronounced on the first harmonic, reducing the TCF to 4 ppm/K for the 3rd harmonic of the 310 nm oxide devices.  相似文献   

7.
This paper presents low loss ring SAW filters on 49°YX, 64°YX, 128°YX LiNbO3 with reflective multistrip couplers (RMSCs). Using the RMSCs with 3 electrodes per λ (λ is the SAW wavelength at the center frequency) and the self-matching approach, when the static capacitance of the IDT is compensated by the acoustic radiation susceptance, the ring filters have shown very low insertion loss of 0.8-1 dB, 3-dB fractional bandwidth of 2-5% with very low ripple of 0.1 dB, stopband attenuation over 50 dB at 10-33% offset from the center frequency of 45 MHz. In a 50 ohm system, 148, 164, 172 MHz ring filters on 128°YX for low power transceivers have provided an insertion loss of 1 dB, 1 dB bandwidth of 1.8-2 MHz, stopband attenuation over 55 dB at ±25 MHz offset from the center frequency. Two cascaded filters at 164.5 MHz have shown insertion losses below 3 dB and stopband attenuation over 90 dB at ±25 MHz, offset from the center frequency. The chip size is 5×4×0.7 mm  相似文献   

8.
LiNbO3: Fe and LiNbO3: Fe,Me (Me = K, Mg, Zn) crystals are illuminated with frequency-doubled pulses of a Q-switched Nd: YAG laser. We detect light-induced absorption changes at high pulse intensities (I > 109Wm-2) utilizing cw probe lasers of different wavelengths (λp = 488, 633, and 785 nm). Intensity dependences as well as relazation processes after illumination are investigated. Absorption changes increase with increasing light intensity. Strongest effects are observed in reduced crystals. Doping with magnesium or zinc and an increasing lithium content, respectively, diminishes light-induced absorption changes. Our results can be described by a two-center charge transport model.  相似文献   

9.
Phase transition in the (1-x)LiTaO3-xWO3 solid solution system has been studied by means of X-ray diffraction and dielectric measurements. Nonstoichiometric solid solutions with a LiTaO3 structure are formed in the range of 0 < x ≤ 0.4, and the introduction of WO3 into LiTaO3 causes cation vacancies in the Lisites. The axial ratio (c/a) of the hexagonal cell and the ferroelectric Curie temperature decrease with the increase of x. A trirutile compound LiTaWO6 (x=0.5) exhibits photochromism.  相似文献   

10.
Diamond has the highest surface acoustic wave (SAW) velocity among all materials and thus can provide much advantage for fabrication of high frequency SAW devices when it is combined with a piezoelectric thin film. Basic SAW properties of layered structures consisting of a piezoelectric material layer, a diamond layer and a substrate were examined by theoretical calculation. Rayleigh mode SAW's with large SAW velocities up to 12,000 m/s and large electro-mechanical coupling coefficients from 1 to 11% were found to propagate in ZnO/diamond/Si, LiNbO3/diamond/Si and LiTaO3/diamond/Si structures. It was also found that a SiO2/ZnO/diamond/Si structure can realize a zero temperature coefficient of frequency with a high phase velocity of 8,000-9,000 m/s and a large electro-mechanical coupling coefficient of up to 4%  相似文献   

11.
The characteristics of a Stoneley wave propagated along an interface between a piezoelectric material and an isotropic material were investigated both theoretically and experimentally. First, the condition for the existence of Stoneley waves was shown for various piezoelectric materials. A rule of thumb for selecting the combination of the two materials was obtained. Then, LiTaO3 was selected as the piezoelectric material and SiO2 was selected the isotropic material. After the calculation of the Stoneley wave characteristics, actual devices were fabricated and measured. The experimental results were found to be in good agreement with the theory; zero slope temperature and high electromechanical coupling coefficient ( K2=1.5%) were obtained for Stoneley wave propagation between SiO2/X-148° LiTaO3. As a result, future surface-acoustic-wave (SAW) devices can be made without any package  相似文献   

12.
Proton-exchanged (PE) waveguides in Z-cut LiNbO3 have been fabricated using benzoic acid. Secondary-ion mass spectrometry (SIMS) measurements show that the distribution of hydrogen in the PE Z-cut LiNbO3 samples exhibits a step-like profile with the diffusion constant D0 and the activation energy Q of about 2.82×108 μm2/h and 87.76 kJ/mol, respectively. On the other hand, the important parameters for the design of surface acoustic wave (SAW) devices are measured and discussed. The results show that the phase velocity and electromechanical coupling coefficient decrease with the increase of kd, where k is the wavenumber and d is the waveguide depth. The variation of insertion loss becomes saturated at about kd=0.068 with a maximum increase of about 4~5 dB. The temperature coefficient of delay calculated from the frequency change of the output of SAW delay line shows an evident increase in the PE layer. Moreover, the effects of postannealing can result in a restoration of the decreased velocity and an improvement of the insertion loss  相似文献   

13.
In this paper, we report silica based planar waveguides doped with Er3+, and co-doped with GeO2 and Al2O3. These sol–gel derived planar waveguides were fabricated on SOS (silica on silicon) using multiple spin-coating and rapid thermal processing (RTP). Investigation has been made on their characteristics in terms of their application in optical amplification and lasing, including photoluminescence (PL), fluorescence lifetime, refractive index, propagation loss, surface roughness, Fourier transform infrared (FTIR) spectrum and X-ray diffraction (XRD) analysis. The propagation loss of a 20-layer planar waveguide was measured to be about 1.6 dB/cm for TE0 and 2.2 dB/cm for TM0 mode. A strong emission transition (4I13/24I15/2) at 1.536 μm with a lifetime of 3.6 ms has been obtained for an optimized molar composition of 90SiO2: 10GeO2: 20AlO1.5: 1ErO1.5.  相似文献   

14.
This paper describes the characterization of SAW propagation in layered substrate and overlayered structures. The software based on the finite element method and spectral domain analysis was newly developed and applied to the characterization of SAW propagation under an infinitely-long Al interdigital transducer on a rotated Y-cut LiTaO3/sapphire substrate. Because of the finite LiTaO3 thickness, a series of spurious resonances appears. It is shown that the excitation strength of the spurious resonances changes with frequency as well as the rotation angle, which reflects the frequency and rotation angle dependence of the energy leakage. Next, the analysis was carried out for SAWs propagating in a SiO2 layer/Al IDT/42°YX-LiTaO3 structure. It is shown that the influence of the SiO2 layer is significantly dependent on the location where the SiO2 layer is deposited. In particular, it is shown that when the SiO2 layer is deposited only on top of the electrodes, the SAW reflectivity increases compared with when the SiO2 layer is deposited between and on top of electrodes.  相似文献   

15.
The microwave dielectric properties and microstructures of Ba(Mg1/3Ta2/3)O3 (BMT) ceramics sintered at low temperatures with 2–3 wt.% NaF additives were investigated. BMT ceramics sintered at 1340 °C for 3–12 h showed dielectric constants (r) of 25.5–25.7, Qf values of 41 500–50 400 GHz and temperature coefficients of the resonator frequency (τf) of 10.9–21.4 ppm °C−1. The variation of sintering time almost had no effect on the dielectric constant. The Qf value increased and the τf decreased with increasing sintering time. The ordering degree of Mg2+ and Ta5+ at B-sites increased with increasing sintering time.  相似文献   

16.
Growing requirements for the optical and environmental stability, as well as the radiation resistance against high-power laser radiation, especially for optical interference coatings used in the ultraviolet spectral range, have to be met by new, optimised, thin-film deposition technologies. For applications in the UV spectral range, the number of useful oxide thin film materials is very limited due to the higher absorption at wavelengths near to the electronic bandgap of the materials. Applying ion-assisted processes offers the ability to grow dense and stable films, but in each case careful optimisation of the deposition process (evaporation rate, substrate temperature, bombarding gas, ion energy and ion current density) has to achieve a balance between densification of the layers and the absorption. High-quality coatings and multilayer interference systems with SiO2 as the low-index material can be deposited by various physical vapour deposition technologies, including reactive e-beam evaporation, ion-assisted deposition and plasma ion-assisted deposition. In order to improve the degradation stability of dielectric mirrors for use in UV free-electron laser optical cavities, a comparative study of the properties of SiO2, Al2O3 and HfO2 single layers was performed, and was addressed to grow very dense films with minimum absorption in the spectral range from 200 to 300 nm. The films were deposited by low-loss reactive electron-beam evaporation, by ion-assisted deposition using a ‘Mark II’ ion source, and by plasma ion-assisted deposition using the advanced plasma source. Optical and structural properties of the samples were studied by spectral photometry, infrared spectroscopy, X-ray diffraction and reflectometry, as well as by investigation of the surface morphology. The interaction of UV radiation with photon energy values close to the bandgap was studied. For HfO2 single layers, laser-induced damage thresholds at 248 nm were determined in the 1-on-1 and 1000-on-1 test modes as a function of the deposition technology and film thickness.  相似文献   

17.
向SiO2基体粉料中添加Al2O3纤维,采用热压注法制备Al2O3/SiO2陶瓷型芯。分析Al2O3纤维含量对陶瓷型芯性能的影响。研究结果表明:Al2O3纤维含量对Al2O3/SiO2陶瓷型芯的线收缩率、体积密度和抗弯强度均有较大的影响。当Al2O3纤维含量大于1wt%时,Al2O3/SiO2陶瓷型芯的线收缩率大幅度降低,稳定在0.335%左右,体积密度随之降低,稳定在1.790 g · cm-3左右;当Al2O3纤维含量为1wt%时,陶瓷型芯抗弯强度达最大值20.48 MPa。分析了Al2O3纤维对Al2O3/SiO2陶瓷型芯烧结收缩的阻滞作用机制。  相似文献   

18.
We developed a new method of determining acoustical physical constants (elastic constant, piezoelectric constant, dielectric constant, and density) of piezoelectric materials with high accuracy. This method acquires velocities of leaky surface acoustic waves (LSAWs) excited on the water-loaded specimen surface, measured by line-focus-beam (LFB) acoustic microscopy, and bulk velocities of longitudinal and shear waves, measured with planewave transducers replacing the LFB device in the same system, together with the dielectric constants and density measured independently, for a small number of specimens. For LiNbO3 and LiTaO3 crystals, we demonstrated that we could accurately determine the constants by choosing proper propagation directions of LSAWs and bulk waves for three principal X-, Y-, and Z-cut specimens and one rotated Y-cut specimen [(104) plate for LiNbO3 and (012) plate for LiTaO3]. The accuracy is nearly the same as that for the constants determined only from the bulk wave velocities  相似文献   

19.
Half-thickness inversion layer high-frequency ultrasonic transducers were fabricated using lithium niobate (LiNbO3) single crystal plate. The transducers developed for this study used a 36deg rotated Y-cut LiNbO3 thin plate with an active element thickness of 115 mum. The designed center frequency was in the range of 30 to 60 MHz. Half-thickness inversion layer was formed after the sample was annealed at a high temperature, and it is shown that the inversion layer thickness can be controlled by the temperature. Silver powder/epoxy composite and parylene were used as acoustic matching layers. A lossy silver epoxy was used as the backing material. Using an analytical method, the electrical impedance for different inversion layer ratios was determined. The measured resonant frequency was consistent with the modeled data. Even-order higher frequency broadband ultrasonic transducers with a center frequency at 60 MHz were obtained using half-thickness inversion layer of LiNbO3 single crystal  相似文献   

20.
LiNbO3 thin films have been obtained by liquid phase epitaxy from a Li2OV2O5 flux. Phase diagram, supersaturation domain, and growth conditions have been investigated. The propagation of light has been demonstrated in an Ag substituted LiNbO3 film grown on a c plate LiNbO3 substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号