首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为合理制定Si-Mn-MO系无碳化物贝氏体钢的生产工艺,利用GLEEBLE-3800热模拟试验机,在真空条件下开展了变形温度对贝氏体钢组织性能影响的热模拟试验.利用光学显微镜、透射电镜等设备,采用力学性能测试、微观组织观察等技术分析手段,对热模拟试样进行了组织观察和硬度检测分析,绘制了Si-Mn-MO系无碳化物贝氏体钢不同变形温度的动态CCT曲线,得出了变形温度对其组织和硬度的影响规律.结果表明,变形温度越低,无碳化物贝氏体钢的相变温度越低,组织越细小,先析铁素体越易析出,越有利于提高贝氏体钢的强硬性和韧塑性.  相似文献   

2.
Carbide-free and carbide-bearing bainitic steels have been obtained. The relationship between the bainitic microstructure and wear resistance has been studied. Results show that carbide-free upper and lower bainitic microstructures obtained in the steel with Si?+?Al mainly consist of bainitic ferrite and retained austenite. Carbide-bearing upper and lower bainitic microstructures obtained in the steel without Si?+?Al consist of bainitic ferrite, carbide and trace amounts of retained austenite. The carbide-free bainite exhibits higher strength and toughness than carbide-bearing bainite, especially the toughness. Under lower wear loading, carbide-bearing lower bainite (LB) exhibits higher wear resistance. Under higher wear loading, carbide-free LB exhibits higher wear resistance, which results from the improved surface hardness due to strain-induced martensitic transformation from the retained austenite.  相似文献   

3.
对一种低碳硅锰钢进行TMCP实验,获得了不同铁素体形态的铁素体/贝氏体双相钢(FB钢),研究了FB钢在单轴拉伸下的变形行为及断裂特性,结果表明:在均匀塑性变形阶段,FB钢的瞬时加工硬化指数n*值与真应变ε的关系曲线可分为n*值较高、n*值随ε缓慢下降以及n*值随ε迅速下降三个阶段,与等轴铁素体/贝氏体双相钢相比,准多边形铁素体/贝氏体双相钢的强度和低应变区的n*值均比较高,FB钢拉伸试样颈缩区的孔洞或微裂纹产生在F-B相界面附近和铁素体内,有助于减弱裂纹尖端附近的局部应力集中,改善钢材的抗裂纹扩展性能.  相似文献   

4.
This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The results show that the density of DLD 12CrNi2 Y alloy steel increases at initial stage and then decreases with an increase of EAD, the highest density of alloy steel sample is 98.95%. The microstructures of DLD12CrNi2 Y alloy steel samples are composed of bainite, ferrite and carbide. With increase of EAD, the microstructures transform from polygonal ferrite(PF) to granular bainite(GB). The martensite-austenite constituent(M-A) in GB transforms from flake-like paralleling to the bainite ferrite laths to granular morphology. It is also found that the average width of laths in finer GB can be refined from 532 nm to 302 nm, which improves the comprehensive properties of DLD 12 CrNi2 Y alloy steel such as high hardness of 342 ± 9 HV_(0.2), yield strength of 702 ± 16 MPa, tensile strength of 901 ± 14 MPa and large elongation of15.2%±0.6%. The DLD 12CrNi2 Y material with good strength and toughness could meet the demand of alloy steel components manufacturing.  相似文献   

5.
A low carbon, low alloy steel has been investigated for producing low carbon carbide-free bainitic microstructure by co-addition of alloying elements of aluminum and silicon. The influence of heat treatment process on microstructure, impact toughness as well as tensile properties was investigated by light optical microscopy, transmission electron microscopy, X-ray diffraction and mechanical property tests. The results demonstrate that the co-addition of aluminum and silicon in the investigated steel plays an effective role in suppressing the precipitation of cementite. A desired microstructure consisting of mainly fine-scale carbide-free bainitic ferrite and thin film-like retained austenite located between the ferrite laths was obtained and accordingly an excellent combination of toughness, ductility and strength was achieved by optimized heat treatments, i.e. by isothermal treatment at 320 °C for ∼84 min or more. The microstructure-mechanical property relationships are discussed.  相似文献   

6.
Fe-0.6C-1.5Si-0.8Mn steel was studied to determine the effect of the microstructure on transformation-induced plasticity (TRIP) of silicon-containing low-alloy steel. A remarkable increase in elongation through TRIP can develop in the steel subjected to the following heat treatments: (1) austemper combined with subcritical annealing (SA Aus-T): subcritical annealing at 993K followed by austempering at 673K and then light tempering (after austenitization at 1173K); (2) austemper coupled with interrupted quenching (IQ Aus-T): interrupted quenching at 533K followed by austempering at 673K and light tempering (after austenitization at 1173K).

The SA Aus-T treatment produced the triple structures of carbide-free upper bainite, retained austenite (γR), and free ferrite. As a result of the IQ Aus-T treatment, the triple structures of carbide-free upper bainite, γR, and tempered martensite appeared. The results are described and microstructural factors in TRIP are discussed.  相似文献   


7.
ABSTRACT

A high silicon, medium carbon cast steel was designed and heat-treated in order to develop microstructures composed of carbide-free bainite and small amounts of free ferrite, with the aim of obtaining high strength cast steels with improved ductility. Because of microsegregation, it was observed that ferrite present in partially austenitised samples is mostly present at the highly alloyed zones, creating an interconnected network even for low proportions of this phase. Despite the coarse solidification structure and marked microsegregation in the cast steel, the mechanical properties obtained for both fully bainitic and bainitic-ferritic microstructures largely satisfy the minimum standard requirements for high strength cast steels and are similar to those reported for wrought steels of similar microstructures.  相似文献   

8.
Abstract

An analytical evaluation of transition temperature from upper to lower bainite in Fe – 0·38C – 0·93Cr (wt-%) steel was carried out. Calculations were based on the model constructed by Takahashi and Bhadeshia, which involves a comparison between the time tθ needed to precipitate cementite within the bainitic ferrite plates with the time tθ required to decarburise supersaturated ferrite plates. It was found that the distribution of lath widths, shown by histograms, of the bainitic ferrite varies with isothermal transformation temperatures and holding times. The transition between upper and lower bainite is found to occur over a narrow range of temperatures (350 – 410°C) and depends on the thickness of bainitic ferrite laths and the volume fraction of precipitated cementite. On comparing t d and tθ it was found that a transition temperature from upper to lower bainite reaction L S of about 350°C could be predicted if the thickness of bainitic ferrite laths is set as w o = 0·1 μm and the volume fraction of cementite set as ξ = 0·01. Calculated differences in the relative behaviour of t d and tθ revealed the occurrence of upper and lower bainite in steel Fe – 0·38C – 0·93Cr consistent with the results of transmission electron microscopy investigation.  相似文献   

9.
Abstract

A detailed microstructural characterization of two silicon-containing low-alloy steels, Fe–0·2C–2Si–3Mn and Fe–0·4C–2Si–4Ni (nominal wt-%), isothermally transformed in the bainitic temperature range (~ 400–250°C), has been carried out using principally electron microscopy, X-ray diffraction, and dilatometry. Upper bainite in these silicon-containing steels consists of bainitic ferrite laths and interwoven thin films of retained austenite instead of cementite. Coarser granular regions of retained austenite may also be obtained. The bainitic ferrite laths (or plates) in lower bainitic structures contain intralath carbides, but the interlath morphology of retained austenite still occurs. The variations in these microstructures with isothermal transformation temperature, and the thermal stability of the retained austenite phase is described and discussed.

MST/526  相似文献   

10.
Heat-treatment processes to obtain carbide-free upper bainite, low bainite and low-temperature bainite in the 34MnSiCrAlNiMo medium-carbon steel were explored. Results show that in the steel bainite transformation mainly goes through three stages: short incubation, explosive nucleation and slow growth. When transformation temperature, T > Ms + 75 °C, upper bainite consisted of catenary bainitic ferrite and blocky retained austenite is obtained in the steel. When Ms + 10 °C < T < Ms + 75 °C, lower bainite is the main morphology composed of lath-like bainitic ferrite and flake-like retained austenite. When T < Ms + 10 °C, the lower bainite, also known as low-temperature bainite, is obtained, which contains much thinner lath-like bainitic ferrite and film-like retained austenite. Mechanical testing results show that the lower the transformation temperature is, the better comprehensive performance is. The low-temperature bainite has the very high tensile strength and impact toughness simultaneously. The lower bainite has lower tensile strength and higher impact toughness. The upper bainite has higher tensile strength and lower impact toughness. The big difference of the mechanical performance between these kinds of bainite is mainly caused by interface morphology, size, and phase interface structure of the bainitic ferrite and the retained austenite. Additionally, when the bainite transformation temperature is decreased, the high-angle misorientation fraction in packets of bainite ferrite plates is increased. High-angle misorientation between phase interfaces can prevent crack propagation, and thus improves impact toughness.  相似文献   

11.
The microstructure of acicular ferrite and its formation for the grain refinement of coarse-grained region of heat-affected zone of high strength low-alloy bainite steels were studied using three-dimensional reconstruction technique. Crystallographic grain size was analyzed by means of electron backscatter diffraction. It was revealed that the microstructure in the coarse-grained region of the heat-affected zone consisted of predominantly bainite packets and a small proportion of acicular ferrite. Acicular ferrite was of lath or plate-like rather than needle or rod-like morphology. Tempering of the coarse-grained region of heat-affected zone showed that the acicular ferrite was more stable than the bainite, indicating that the acicular ferrite was formed prior to bainite. The acicular ferrite laths or plates divided the prior austenite grains into smaller and separate regions, and confining the bainite transformed at lower temperatures in the smaller regions and hence leading to the grain refinement in the coarse-grained region of the heat-affected zone.  相似文献   

12.
The intermediate transformation of Mn-Mo-Nb steel during continuous cooling   总被引:1,自引:0,他引:1  
The continuous cooling transformation diagram for low-carbon low-alloy steel containing 0.05% C, 1.99% Mn, 0.31% Mo and 0.06% Nb was constructed by dilatometry and metallography. The intermediate transformation between martensite and polygonal ferrite involves two typical stages: the formation of ferrite matrix and the formation of microphases. Four intermediate transformation products obtained from various cooling rates and designated B1, B2, A1 and A2, were studied. The B1 and B2 structures are composed of pockets of parallel ferrite laths and interlath microphases, which are films of retained austenite in B, and are fragments of retained austenite or martensite or martensite-retained austenite (M-A) constituents in B2. The B1 structure is further characterized by the appearance of martensite particles inside the ferrite laths. The A1 structure is comprised of the randomly arranged ferrite groups. Each group contains several short ferrite laths in the same crystallographic orientation and granular M-A constituents or martensite located at the rim of ferrite laths or groups. The A2 structure is morphologically analogous to Widmanstätten ferrite. The formation mechanisms of these products are also discussed.  相似文献   

13.
Microstructures throughout a 460 mm × 800 mm cross-section of non-quenched prehardened (NQP) steel for plastic mould were characterized by optical microscopy, scanning electronic microscopy and transmission electronic microscopy. Strength and hardness of the NQP steel block was also tested. It is found that mechanical properties at core are close to that at surface and hardness distributes between 37 and 40 HRC through the whole section. Grains at core are coarser and deformation bands are observed at surface, while microstructures both at core and at surface are composed of bainitic ferrite laths with high dislocation density and interlath cementite and/or residual austensite. Considering continuous cooling transformation of the NQP steel, the small variation in hardness throughout the section is caused by the main microstructure bainite which possesses high hardenability. Moreover, the differences of the lath widths and dislocation density in baintic ferrite lath make hardness at surface a little higher than that at core.  相似文献   

14.
A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J).  相似文献   

15.
使用TEM研究了钢中贝氏体的精细结构及碳化物的形貌与分布,加入微量元素使贝氏体铁素体组织明显细化。贝氏体铁素体由亚单元或亚块组成,碳化物形貌不一,分布在条间,片内和亚块边界。贝氏体铁素体内有极为丰富的精细组织。文中讨论了贝氏体的相变机制。  相似文献   

16.
3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.  相似文献   

17.
Fatigue performance of ferrite–martensite (FM) and ferrite–bainite (FB) dual‐phase (DP) steels used in automotive wheels has been compared in terms of (i) high‐cycle fatigue performance and failure mechanisms and (b) low‐cycle fatigue performance (Δεt/2 = 0.002 to 0.01) and associated deformation mechanisms. FBDP steel exhibits moderately better high‐cycle fatigue performance, owing to delay in microcrack initiation. In FBDP steel, microcracks initiate predominantly along ferrite grain boundaries, while that at FB interface is significantly delayed in comparison with FMDP steel, where few microcracks appear at FM interface even below the endurance limit. During low‐cycle fatigue, however, FMDP steel performs considerably better than FBDP steel till Δεt/2 ≤ 0.005 attributed to initial cyclic hardening, followed by cyclically stable behaviour exhibited by FMDP steel. In sharp contrast, at all Δεt/2 > 0.002, FBDP steel undergoes continuous cyclic softening. The latter may cause undesirable deformation of wheels in service.  相似文献   

18.
3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120~480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists inheat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.  相似文献   

19.
对一种钒微合金化TRIP钢进行冷轧连续退火,研究了钢的组织特征和力学性能。结果表明,贝氏体基TRIP钢的组织由贝氏体/马氏体和少量的残余奥氏体组成。随着贝氏体区等温时间的延长,钢的抗拉强度下降,屈服强度和延伸率提高。残余奥氏体由块状向薄膜状转变,体积分数增加,薄膜状残余奥氏体主要分布在贝氏体板条间,厚度为50-90 nm。在400℃等温180 s连续退火钢板呈现出相对低抗拉强度(960 MPa)、高屈服强度(765 MPa)和高延伸率(22.0%)的特性,而且加工硬化指数(0.20)、各向异性指数(0.94)和强塑积(21120 MPa.%)也较为优良。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号