共查询到20条相似文献,搜索用时 15 毫秒
1.
Kunitsugu Aramaki 《Corrosion Science》2010,52(1):1-6
For preparing an ultrathin two-dimensional polymer coating adsorbed on passivated iron, a 16-hydroxyhexadecanoate ion HO(CH2)15CO2− self-assembled monolayer (SAM) was modified with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Protection of passivated iron against passive film breakdown and corrosion of iron was investigated by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M Na2SO4 solution during immersion for many hours. The time required for passive film breakdown of the polymer-coated electrode was markedly higher in this solution than that of the passivated one, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, more than 99.9% in 0.1 M Na2SO4 before the passive film was broken down, showing prominent cooperative suppression of iron corrosion in the solution by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis (EPMA). Prevention of passive film breakdown and iron corrosion for the polymer-coated electrode healed in 0.1 M NaNO3 was also examined in 0.1 M Na2SO4. 相似文献
2.
Kunitsugu Aramaki 《Corrosion Science》2010,52(9):2766-2772
A two-dimensional polymer coating, the self-assembled monolayer of 16-hydroxy hexadecanoate ion HO(CH2)15 modified with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3 was prepared on the passivated iron electrode and further, the passive film was healed by additional treatment in 0.1 M NaNO3. This electrode was immersed in oxygenated 0.1 M KClO4 solutions with and without 1 × 10−4 to 1 × 10−2 M of Cl−. Protection of passive film against breakdown by covering the electrode with the polymer coating was examined by monitoring the open-circuit potential during immersion in the solutions for many hours to determine the time for passive film breakdown, tbd. Repeated polarization measurements were carried out during immersion in these solutions for obtaining the protective efficiency, P. The tbd value of the passivated, polymer-coated and healed electrode in 0.1 M KClO4 solutions with and without Cl− increased with a decrease in the concentration of Cl−. No breakdown occurred on the electrode during immersion in 0.1 M KClO4 solutions with and without 1 × 10−4 of Cl− for 360 h. The P values were extremely high, more than 99.9% before tbd, indicating complete protection of iron from corrosion. The effect of healing treatment in 0.1 M NaNO3 on passive film breakdown was investigated by electron-probe microanalysis. 相似文献
3.
Kunitsugu Aramaki 《Corrosion Science》2004,46(10):2563-2581
A film composed of a one-dimensional polymer was fabricated by modification of a 16-hydroxyhexadecanoate ion HO(CH2)15CO2− self-assembled monolayer (SAM) adsorbed on a passivated iron electrode with octadecyltriethoxysilane C18H37Si(OC2H5)3. The pitting potential, Epit of the passivated electrode coated with this film was measured by anodic polarization in a borate buffer solution containing 0.1 M of Cl−. The Epit value of the electrode coated with the film was markedly shifted from the value of the bare electrode in the positive direction, indicating prevention of passive film breakdown. No breakdown occurred over the potential range of passive region in some cases. Structure of the modified SAM was discussed by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement of the electrode surface covered with the film. Suppression of Cl− accumulation at a defect of the passive film was revealed by electron-probe microanalyses of the surfaces uncoated and coated with the SAM modified with octyltriethoxysilane C8H17Si(OC2H5)3 after anodic polarization in the borate buffer containing Cl−. 相似文献
4.
An ultrathin, ordered and two-dimensional polymer coating was prepared on passivated iron by modification of 16-hydroxyhexadecanoate ion HO(CH2)15CO2− self-assembled monolayer (SAM) with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Protection of passivated iron against passive film breakdown and corrosion of iron was examined by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M NaNO3 solution during immersion for many hours. Passive film breakdown on the polymer-coated electrode in the solution was not observed during immersion for 480 h, whereas that of the passivated one occurred at 18.1 h, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, around 99.9% in the initial region of the immersion time up to 72 h and more than 98.3% thereafter, indicating prominent cooperative suppression of iron corrosion in 0.1 M NaNO3 by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis. 相似文献
5.
Kunitsugu Aramaki 《Corrosion Science》2005,47(6):1582-1597
The effect of an ultrathin, regularly arranged polymer film on prevention of passive film breakdown on iron in the presence of chloride ion was investigated. The film of two-dimensional polymer was prepared by modification of a 16-hydroxyhexadecanoate ion self-assembled monolayer adsorbed on a passivated iron electrode with 1,2-bis(triethoxysilyl)ethane(C2H5O)3Si(CH2)2Si(OC2H5)3 and octyltriethoxysilane C8H17Si(OC2H5)3. The pitting potentials of the passivated electrodes bare and covered with the polymer film were determined by anodic polarization measurements in a borate buffer solution containing 0.1 M of Cl−. The pitting potential of the coated electrode was higher than that of the uncoated one, indicating prevention of passive film breakdown. No breakdown was observed over the potential range in the passive and transpassive regions by covering the passive film with the well-arranged two-dimensional polymer film. The film was characterized by X-ray photoelectron and FTIR reflection spectroscopies and measurement of the contact angle with a drop of water. 相似文献
6.
Kunitsugu Aramaki 《Corrosion Science》2006,48(1):209-225
An ultrathin film of two-dimensional polymer was prepared on a passivated iron electrode by modification of a 16-hydroxyhexadecanoate ion self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. This film prevented passive film breakdown examined by potentiodynamic anodic polarization of the coated electrode in the borate buffer solution containing 0.1 M of Cl−. Neither current spikes nor the pitting potential was observed in the passive and transpassive regions of polarization curve. The anodic current density was decreased in these regions markedly, implying hindrance to permeation of Cl− and water through the film. Structure of the film was clarified by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement with a drop of water. Electron-probe microanalysis of the passivated surface coated with the film after anodic polarization scanning up to the transpassive region revealed that the polymer film prevents pit initiation by an attack on the passive film with Cl−. 相似文献
7.
Kunitsugu Aramaki 《Corrosion Science》2004,46(10):2533-2548
A self-assembled monolayer (SAM) of 16-hydroxyhexadecanoate ion HO(CH2)15CO2−(HOC16A−) has been prepared on an iron electrode passivated in a borate buffer solution (pH 8.49) in the preceding paper. In this work, the HOC16A− SAM on the passivated electrode was modified with octyltriethoxysilane C8H17Si(OC2H5)3 to form a film composed of one-dimensional polymer. Prevention of passive film breakdown was examined by anodic polarization measurements of the electrodes uncoated and coated with the modified SAM in the borate buffer containing 0.1 M of Cl−. The pitting potential, Epit of the coated electrode shifted from that of the uncoated electrode in the positive direction, indicating prevention of passive film breakdown. The anodic current density was decreased in the passive and transpassive regions by coverage with the modified SAM. Neither current spikes nor Epit was observed in the curve of the passive region in some cases, demonstrating complete protection of the passive film against breakdown in the Cl− solution. The modified SAM on the electrode was characterized by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement. 相似文献
8.
Kunitsugu Aramaki 《Corrosion Science》2010,52(4):1464-1471
An ultrathin, ordered and two-dimensional polymer coating was prepared on a passivated iron electrode by modification of 16-hydroxyhexadecanoate ion HO(CH2)15CO2− self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Subsequently, the electrode was healed in 0.1 M NaNO3. Protection of passivated iron against passive film breakdown and corrosion of iron was examined by monitoring of the open-circuit potential and repeated polarization measurements of the polymer-coated and healed electrode in an aerated 0.1 M NaCl solution during immersion for many hours. Localized corrosion was markedly prevented by coverage with the polymer coating and the healing treatment in 0.1 M NaNO3. Prominent protection of iron from corrosion in 0.1 M NaCl was observed before the breakdown occurred. The electrode surface covered with the healed passive film and polymer coating was analyzed by contact angle measurement, X-ray photoelectron spectroscopy and electron-probe microanalysis. 相似文献
9.
Kunitsugu Aramaki 《Corrosion Science》2003,45(11):2639-2655
Breakdown of a passive film on iron in a borate buffer solution (pH 8.49) containing 0.1 M of Cl− was suppressed by coverage of the passive film surface with a self-assembled monolayer (SAM) of hexadecanoate ion C15H31CO2− (C16A−). The pitting potential of an iron electrode previously passivated in the borate buffer at 0.50 V/SCE increased by treatment in an aqueous solution of sodium hexadecanoate for many hours, indicating protection of the passive film from breakdown caused by an attack on defects of the film with Cl−. No breakdown occurred over the potential range of the passive region by coverage with the SAM of C16A− in some cases. Structures of the passive film and the monolayer were characterized by X-ray photoelectron and Fourier transform infrared reflection spectroscopies and contact angle measurement with a drop of water. 相似文献
10.
Prevention of iron corrosion in an aerated 0.1 M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and alkyltriethoxysilane CnH2n + 1Si(OC2H5)3 (n = 8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than −0.2 V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24 h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4 h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely. 相似文献
11.
Ultrathin films of two-dimensional polymers were prepared on an iron electrode by modification of a p-hydroxymethylbenzene p-HOCH2C6H4 (HOMB) self-assembled monolayer (SAM) with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 (BTESE) and alkyltriethoxysilanes CnH2n+1Si(OC2H5)3 (CnTES, n = 8 and 18). The electrode was derivatized by cathodic reduction of p-hydroxymethylbenzenediazonium tetrafluoroborate HOCH2C6H4N2BF4 in an electrolytic acetonitrile solution below 10 °C for 1 h to form the SAM via a covalent bond between carbon and iron atoms. The protective ability of the polymer film against iron corrosion was determined by polarization measurement of the coated electrode in an oxygenated 0.5 M NaCl solution. The protective efficiencies of the polymer films prepared by modification with BTESE plus C8TES and C18TES were 63.9% and 68.5% after immersion in 0.5 M NaCl for 1.5 h, respectively. These values were higher than those of the one-dimensional polymer films prepared with the respective CnTES. The film of the HOMB SAM modified with BTESE plus C8TES was characterized by contact angle measurement using a drop of water and X-ray photoelectron and FTIR reflection spectroscopies. The films of the HOMB SAM modified with BTESE plus C8TES and C18TES were persistent during immersion of the coated electrodes in 0.5 M NaCl for many hours by far as compared with the alkanethiol SAM anchored on iron by the formation of a coordinate bond. 相似文献
12.
Kunitsugu Aramaki 《Corrosion Science》2004,46(2):313-328
Self-assembled monolayers (SAMs) of carboxylate ions Cn−1H2n−1CO2− (CnA−) with the carbon number, n=12-18 and 16-hydroxyhexadecanoate ion HO(CH2)15CO2− (HOC16A−) were prepared on an iron electrode previously passivated in a borate buffer at pH 8.49 by treatment in aqueous solutions of their sodium salts for many hours. Breakdown of the passive film on the electrode coated with the SAM was examined by anodic polarization measurement in the borate buffer containing 0.1 M of Cl−. The pitting potentials of the passivated electrodes coated with the SAMs of CnA− and HOC16A− shifted toward a more positive potential than that of the uncoated electrode, indicating prevention of passive film breakdown by blocking diffusion of Cl− through the SAM to defects of the passive film. No breakdown was observed over the potential range of the passive region by coverage of the passive film with the SAM in some cases. The SAMs on the passive film were characterized by contact angle measurements and X-ray photoelectron and Fourier transform infrared reflection spectroscopies. 相似文献
13.
Additional modification of the ultrathin two-dimensional polymer film, a p-hydroxymethylbenzene C6H4CH2OH self-assembled monolayer modified with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 (BTESE) and alkyltriethoxysilane CnH2n+1Si(OC2H5)3 (CnTES, n = 8 or 18), was attempted to improve the protective ability of the film against iron corrosion. The ability of the film was examined by polarization measurement of an iron electrode coated with the film in an oxygenated 0.5 M NaCl solution after immersion in the solution for 1.5 to 72 h. Marked improvement of the protective efficiency, P was not obtained by additional modification to the polymer film with BTESE. The P values of the two-dimensional polymer films were markedly increased by additional modification with C8TES. The increases in P were ascribable to improvement of alkyl tail arrangement and additional interconnection in the polymer films. The film on the iron surface was characterized by contact angle measurement, FTIR reflection spectroscopy and X-ray photoelectron spectroscopy. The protective abilities of the two-dimensional polymer films additionally modified with C8TES were persistent during immersion for 72 h. 相似文献
14.
Kunitsugu Aramaki 《Corrosion Science》2006,48(8):2332-2347
A passive film on an iron electrode was modified with alkyltriethoxysilanes directly. In order to examine the protective ability of the modified passive film against breakdown, the pitting potential, Epit was measured by anodic polarization of the modified electrode in a borate buffer solution (pH 8.49) containing 0.1 M of Cl−. The value of Epit for the modified electrode shifted in the positive direction from that of the unmodified electrode, indicating prevention of passive film breakdown. The modified passive film was not broken down in the passive and transpassive regions of polarization curve in some cases. However, many current spikes appeared in the all curves of the modified electrodes. The modified surface of passivated electrode was characterized by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement. There were defects and clusters of associated water within the modified film and hence, Cl− could permeate through the defects, leading to appearance of current spikes and occurrence of breakdown. 相似文献
15.
An ultrathin and ordered polymer coating was prepared on a passivated iron electrode by modification of a 16-hydroxyhexadecanoate ion self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octyltriethoxysilane C8H17Si(OC2H5)3. Further, the passivated and polymer-coated electrode was healed by treatment in 1.0 M NaNO3 for 4 h. Prevention of passive film breakdown and iron corrosion for the passivated, polymer-coated and healed electrode was examined by monitoring of the open-circuit potential and repeated polarization measurements in oxygenated 0.1 M KClO4, 0.1 M Na2SO4 and 0.1 M NaCl for many hours. The values of the time for passive film breakdown, tbd were >240, 22.2 and 9.5 h in these solutions, respectively. The protective efficiencies for the electrode were extremely high, more than 99.9% before tbd, indicating complete protection of substrate iron against corrosion in these solutions, unless passive film breakdown occurred. The presence of on the passive surface by treatment in 1.0 M NaNO3 was detected by X-ray photoelectron and FTIR reflection spectroscopies. The self-healing activity of adsorbed to suppress passive film breakdown was discussed. 相似文献
16.
A self-assembled monolayer (SAM) of p-hydroxymethylbenzene HOCH2C6H4 - (HOMB) moiety adsorbed on iron by the formation of a covalent bond between carbon and iron atoms was prepared by electrochemical derivatization of an iron electrode with p-hydroxymethylbenzenediazonium tetrafluoroborate HOCH2C6H4N2BF4. The electrode covered with the HOMB SAM was modified with alkyltriethoxysilanes CnH2n+1Si(OC2H5)3 (CnTES, n = 8 or 18) to prepare a film of one-dimensional polymer. The protective ability of the polymer film was determined by polarization measurement of the covered electrode in an aerated 0.5 M NaCl solution. The ability was enhanced by modification of the HOMB SAM with CnTES markedly. The iron surface coated with the one-dimensional polymer film of the HOMB SAM modified with C8TES was characterized by contact angle measurement and FTIR reflection and X-ray photoelectron spectroscopies. The persistence in the protective ability of the polymer film against iron corrosion in 0.5 M NaCl may be associated with the strong adsorption via the covalent bond, revealed by electron-probe microanalysis. 相似文献
17.
Sérgio Meth Natali Savchenko David Starosvetsky Alec Groysman 《Corrosion Science》2010,52(1):125-2855
Thioacetate hexadecyltrimethoxysilane was deposited on SiO2-coated stainless steel to form a thioacetate-functionalized monolayer. In situ oxidation of the thioacetate yielded a sulfonate-functionalized monolayer. Solution deposition of TiO2 on this monolayer covered the stainless steel with a thin layer of the metal oxide (5-10 nm). Cyclic voltammetry (CV) and potentiostatic current transient demonstrated the efficiency of the corrosion protection in sodium chloride media, including protection against pitting corrosion. 相似文献
18.
The corrosion behaviour of an HVOF Ni–5Al/WC–17Co coating on Al-7075 is investigated in 0.5 M H2SO4. In the temperature range of 25–45 °C, the coating exhibits pseudopassivity that effectively protects from localized corrosion. At 25 °C, pseudopassivity proceeds via three stages: during the first stage, oxidation of W in the binder phase occurs. The second stage is characterized by oxidation of W in both the binder and the carbide particles. The third stage is characterized by intensive hydration of WO3 and formation of Co3O4. During the second and third pseudopassive stages, the formation of a bi-layer surface film is postulated. The inner layer, consisting of anhydrous oxides, has a barrier character. The outer layer, composed of WO3 · xH2O, is unstable. In case of surface film disruption, the bond coat successfully hinders corrosion propagation into the Al-alloy. Higher electrolyte temperatures lead to faster corrosion kinetics and higher tendency for pitting. 相似文献
19.
The film thickness, d of a p-hydroxymethylbenzene - C6H4CH2OH (HOMB) self-assembled monolayer (SAM) adsorbed on iron via a covalent bond was increased by multistep modification with tetraethoxysilane (C2H5O)4Si (TES) and 1,8-octanediol HO(CH2)8OH (C8DO) and subsequently with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 (BTESE) and akyltriethoxysilane CnH2n+1Si(OC2H5)3 (CnTES, n = 8 or 18). The protective ability of the film against iron corrosion was examined by polarization measurement of the iron electrode coated with the film in an oxygenated 0.5 M NaCl after immersion in the solution for many hours. The values of protective efficiency, P for the films, the HOMB SAM modified with TES and C8DO twice and subsequently with BTESE and CnTES were high, more than 81% at n = 8 and 85% at n = 18 in the range of the immersion time, t up to 240 h, respectively. The maximal P values of the respective films were 88.0% and 92.2%, of which approximate d values were 4.6 and 5.8 nm. The high protection of iron against corrosion was attributed to increases in the film thickness and interconnection between the adsorbed molecules with Si-O polymer linkages. The protective ability of the film was remarkably persistent during immersion in the solution for many hours. A slight enhancement of P was observed by additional modification of the modified HOMB SAM with C8TES due to increases in interconnection and close packed arrangement. The formation of strong adsorption bonds, σ-covalent bond and back-donating π-bond, between the carbon atom of HOMB moiety and iron atom was discussed. 相似文献
20.
The corrosion inhibition effect of N-aminorhodanine (N-AR) on mild steel (MS) in 0.5 M H2SO4 was studied in both short and long immersion duration using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), chronoamperometry and hydrogen gas evolution. The surface morphology of MS was examined with scanning electron microscopy (SEM) in absence and presence inhibitor. The inhibitor adsorption process on MS surfaces obeys the Langmuir adsorption isotherm. The results show that NAR is a good inhibitor for MS in the acidic medium. The inhibition efficiency obtained from potentiodynamic polarization, EIS and LPR up to 98% is determined. 相似文献