首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) is a positive-strand RNA virus whose genome is replicated by a direct RNA-to-RNA mechanism. Initiation of negative-strand RNA synthesis is believed to proceed from the 3' end of the genomic RNA. The high conservation of the 3' terminus suggests that this region directs the assembly of proteins required for the initiation of RNA replication. We sought to determine whether host proteins bind specifically to this RNA structure. We observed specific binding of cellular proteins to labeled 3'-terminal RNA by mobility shift analysis. UV crosslinking revealed that the predominant 3'-terminal RNA-binding protein migrates as a single, 60-kDa species that can be precipitated by monoclonal antibodies directed against heterogeneous nuclear ribonucleoprotein I, also called polypyrimidine tract-binding protein (hnRNP-I/PTB), a protein previously shown to bind to the 5' internal ribosome entry site (IRES) of the HCV genome. Purified hnRNP-I/PTB also bound selectively to the 3' end of the HCV genome. hnRNP-I/PTB binding requires the upstream two stem-loop structures (SL2 and SL3) but not the most 3'-terminal stem-loop (SL1). Minor alteration of either the stem or loop sequences in SL2 or SL3 severely compromised hnRNP-I/PTB binding, suggesting extremely tight RNA structural requirements for interaction with this protein. hnRNP-I/PTB does not bind to either end of the antigenomic RNA strand and binds to the 5' IRES element of the genome at least 10-fold less avidly than to the 3' terminus. The strong, selective, and preferential binding of hnRNP-I/PTB to the 3' end of the HCV genome suggests that it may be recruited to participate in viral replication, helping to direct initiation of negative-strand RNA synthesis, stabilize the viral genome, and/or regulate encapsidation of genomic RNA.  相似文献   

2.
Translation initiation of hepatitis C virus (HCV) RNA occurs by internal entry of a ribosome into the 5' nontranslated region in a cap-independent manner. The HCV RNA sequence from about nucleotide 40 up to the N terminus of the coding sequence of the core protein is required for efficient internal initiation of translation, though the precise border of the HCV internal ribosomal entry site (IRES) has yet to be determined. Several cellular proteins have been proposed to direct HCV IRES-dependent translation by binding to the HCV IRES. Here we report on a novel cellular protein that specifically interacts with the 3' border of the HCV IRES in the core-coding sequence. This protein with an apparent molecular mass of 68 kDa turned out to be heterogeneous nuclear ribonucleoprotein L (hnRNP L). The binding of hnRNP L to the HCV IRES correlates with the translational efficiencies of corresponding mRNAs. This finding suggests that hnRNP L may play an important role in the translation of HCV mRNA through the IRES element.  相似文献   

3.
RNase protection-gel retention studies show human host cell-specific ribonucleoprotein complexes with human immunodeficiency virus type 1 Rev-responsive element (RRE) RNA. Nuclear proteins from rodent or murine cells appear to lack the ability to form these complexes. Human-mouse somatic cell hybrids retaining a single human chromosome, either 6 or 12, form the RRE-nuclear-protein complexes. One of the complexes requires the entire RRE RNA, while the other needs RRE RNA stem-loops 1 and 2 only. Two major proteins with molecular masses of 120 and 62 kDa specifically bind to RRE RNA. Rodent cells (CHO) either lack or contain small amounts of these RRE-binding proteins.  相似文献   

4.
The 3' noncoding region (NCR) of the negative-strand RNA [3'(-)NCR RNA] of the arterivirus simian hemorrhagic fever virus (SHFV) is 209 nucleotides (nt) in length. Since this 3' region, designated 3'(-)209, is the site of initiation of full-length positive-strand RNA and is the template for the synthesis of the 5' leader sequence, which is found on both full-length and subgenomic mRNAs, it is likely to contain cis-acting signals for RNA synthesis and to interact with cellular and viral proteins to form replication complexes. Gel mobility shift assays showed that cellular proteins in MA104 S100 cytoplasmic extracts formed two complexes with the SHFV 3'(-)209 RNA, and results from competition gel mobility shift assays demonstrated that these interactions were specific. Four proteins with molecular masses of 103, 86, 55, and 36 kDa were detected in UV-induced cross-linking assays, and three of these proteins (103, 55, and 36 kDa) were also detected by Northwestern blotting assays. Identical gel mobility shift and UV-induced cross-linking patterns were obtained with uninfected and SHFV-infected extracts, indicating that the four proteins detected are cellular, not viral, proteins. The binding sites for the four cellular proteins were mapped to the region between nt 117 and 184 (68-nt sequence) from the 3' end of the SHFV negative-strand RNA. This 68-nt sequence was predicted to form two stem-loops, SL4 and SL5. The 3'(-)NCR RNA of another arterivirus, lactate dehydrogenase-elevating virus C (LDV-C), competed with the SHFV 3'(-)209 RNA in competition gel mobility shift assays. UV-induced cross-linking assays showed that four MA104 cellular proteins with the same molecular masses as those that bind to the SHFV 3'(-)209 RNA also bind to the LDV-C 3'(-)NCR RNA and equine arteritis virus 3'(-)NCR RNA. However, each of these viral RNAs also bound to an additional MA104 protein. The binding sites for the MA104 cellular proteins were shown to be located in similar positions in the LDV-C 3'(-)NCR and SHFV 3'(-)209 RNAs. These data suggest that the binding sites for a set of the cellular proteins are conserved in all arterivirus RNAs and that these cell proteins may be utilized as components of viral replication complexes.  相似文献   

5.
A nucleic acid hybridization assay was used to evaluate inhibitory activity of antiviral compounds against hepatitis A virus (HAV) in cell culture and compared to radioimmunoassay by analysis of variance procedure. The 5' genomic end of the HM-175 strain was used as digoxigenin-labeled RNA probe. Dot-blot examination showed a reduction of detectable HAV RNA in infected cells when treated with amphotericin B. An antiviral dose-effect was shown by statistical analysis of densitometric measures of hybridization signals. Comparison between molecular hybridization assay and radioimmunoassay by analysis of variance procedure showed the equivalence of both methods. Data previously obtained on selected drugs by antigen and infectious titres determinations were confirmed by hybridization assay and make possible digoxigenin-labeled RNA probe use to measure an antiviral dose-effect for screening of hepatitis A antiviral compounds.  相似文献   

6.
7.
Retroviruses require both spliced and unspliced RNA for replication. Accumulation of unspliced Rous sarcoma virus RNA is facilitated in part by a negative cis element in the gag region, termed the negative regulator of splicing (NRS), which serves to repress splicing of viral RNA but can also block splicing of heterologous introns. The NRS binds components of the splicing machinery including SR proteins, U1 and U2, small nuclear ribonucleoproteins (snRNPs) of the major splicing pathway, and U11 snRNP of the minor pathway, yet splicing does not normally occur from the NRS. A mutation that abolishes U11 binding (RG11) also abrogates NRS splicing inhibition, indicating that U11 is functionally important for NRS activity and suggesting that the NRS is recognized as a minor-class 5' splice site (5' ss). We show here, using specific NRS mutations to disrupt U11 binding and coexpression of U11 snRNA genes harboring compensatory mutations, that the NRS U11 site is functional when paired with a minor-class 3' ss from the human P120 gene. Surprisingly, the expectation that the same NRS mutants would be defective for splicing inhibition proved false; splicing inhibition was as good as, if not better than, that for the wild-type NRS. Comparison of these new mutations with RG11 indicated that the latter may disrupt binding of a factor(s) other than U11. Our data suggest that this factor is U1 snRNP and that a U1 binding site that overlaps the U11 site is also disrupted by RG11. Analysis of mutations which selectively disrupted U1 or U11 binding indicated that splicing inhibition by the NRS correlates most strongly with U1 snRNP. Additionally, we show that U1 binding is facilitated by SR proteins that bind to the 5' half of the NRS, confirming an earlier proposal that this region is involved in recruiting snRNPs to the NRS. These data indicate a functional role for U1 in NRS-mediated splicing inhibition.  相似文献   

8.
The viral variability of 5 hepatitis C virus (HCV)-infected immunocompromised patients was analyzed and compared with that in isolates from immunocompetent subjects. The patients were followed longitudinally with regard to changes in hypervariable region 1 (HVR1) of HCV using a direct DNA sequencing approach. For the immunocompromised patients, viral nucleotide sequence variability was markedly lower than in immunocompetent HCV-positive patients. For 1 agammaglobulinemic patient and 1 AIDS patient, no variation in the major amino acid sequence of HCV HVR1 could be observed, while another agammaglobulinemic patient exhibited transient variations and amino acid substitutions despite the lack of functioning humoral immune response. The study supports the general hypothesis of humoral immune selection as the main force of sequence variation in the HVR1 region but suggests that other selection mechanisms may contribute to modulation of the composition of the viral population.  相似文献   

9.
The hepatitis A virus cellular receptor 1 (HAVcr-1) cDNA codes for a class I integral membrane glycoprotein, termed havcr-1, of unknown natural function which serves as an African green monkey kidney (AGMK) cell receptor for HAV. The extracellular domain of havcr-1 has an N-terminal Cys-rich region that displays homology with sequences of members of the immunoglobulin superfamily, followed by a Thr/Ser/Pro (TSP)-rich region characteristic of mucin-like O-glycosylated proteins. The havcr-1 glycoprotein contains four putative N-glycosylation sites, two in the Cys-rich region and two in the TSP-rich region. To characterize havcr-1 and define region(s) involved in HAV receptor function, we expressed the TSP-rich region in Escherichia coli fused to glutathione S-transferase and generated antibodies (Ab) in rabbits (anti-GST2 Ab). Western blot analysis with anti-GST2 Ab detected 62- and 65-kDa bands in AGMK cells and 59-, 62-, and 65-kDa bands in dog cells transfected with the HAVcr-1 cDNA (cr5 cells) but not in dog cells transfected with the vector alone (DR2 cells). Treatment of AGMK and cr5 cell extracts with peptide-N-glycosidase F resulted in the collapse of the havcr-1-specific bands into a single band of 56 kDa, which indicated that different N-glycosylated forms of havcr-1 were expressed in these cells. Treatment of AGMK and cr5 cells with tunicamycin reduced binding of protective monoclonal Ab (MAb) 190/4, which suggested that N-glycans are required for binding of MAb 190/4 to havcr-1. To test this hypothesis, havcr-1 mutants lacking the N-glycosylation motif at the first site (mut1), second site (mut2), and both (mut3) sites were constructed and transfected into dog cells. Binding of MAb 190/4 and HAV to mut1 and mut3 cells was highly reduced, while binding to mut2 cells was not affected and binding to dog cells expressing an havcr-1 construct containing a deletion of the Cys-rich region (d1- cells) was undetectable. HAV-infected cr5 and mut2 cells but not mut1, mut3, d1-, and DR2 cells developed the characteristic cytoplasmic granular fluorescence of HAV-infected cells. These results indicate that the Cys-rich region of havcr-1 and its first N-glycosylation site are required for binding of protective MAb 190/4 and HAV receptor function.  相似文献   

10.
Nucleated erythroid cells isolated from the spleens of anemic mice were used to investigate the processing of the polyadenylic acid region of globin mRNA. Cells were labeled in media containing [3H] adenosine and transferred to media containing no radioactive precursor and incubated further in the presence or absence of actinomycin D. After various times following the transfer of the cells, globin mRNA was isolated using a combination of oligo(dT)-cellulose affinity chromatography, sucrose density centrifugation, and globin cDNA (the complementary DNA copy of globin mRNA)-cellulose affinity chromatography. The size of the poly(A) region was determined by polyacrylamide gel electrophoresis of the T1 and pancreatic RNase-resistant fragments. The prelabeled poly(A) region which initially comprises approximately 150 adenylate residues was found to become shorter with time, both in cells incubated in medium containing no radioactive precursor and in the presence of actinomycin D. After 9 h of incubation in the presence of actinomycin D, two major size classes of poly(A) were observed, one containing 35 to 45 adenylic acid residues and the other containing 55 to 65 residues. These two size classes are similar to those found in circulating reticulocytes suggesting that the poly(A) shortening observed in these cell incubation studies is similar to that which occurs in vivo. Two protein synthesis inhibitors, emetine and cycloheximide, were investigated with respect to their effect on poly(A) shortening. Neither drug inhibited the shortening of the poly(A) region of globin mRNA, suggesting that protein synthesis is not required for this process to occur.  相似文献   

11.
Crystal structure of RNA helicase domain from genotype 1b hepatitis C virus has been determined at 2.3 A resolution by the multiple isomorphous replacement method. The structure consists of three domains that form a Y-shaped molecule. One is a NTPase domain containing two highly conserved NTP binding motifs. Another is an RNA binding domain containing a conserved RNA binding motif. The third is a helical domain that contains no beta-strand. The RNA binding domain of the molecule is distinctively separated from the other two domains forming an interdomain cleft into which single stranded RNA can be modeled. A channel is found between a pair of symmetry-related molecules which exhibit the most extensive crystal packing interactions. A stretch of single stranded RNA can be modeled with electrostatic complementarity into the interdomain cleft and continuously through the channel. These observations suggest that some form of this dimer is likely to be the functional form that unwinds double stranded RNA processively by passing one strand of RNA through the channel and passing the other strand outside of the dimer. A "descending molecular see-saw" model is proposed that is consistent with directionality of unwinding and other physicochemical properties of RNA helicases.  相似文献   

12.
BACKGROUND & AIMS: Mutations in hepatitis C virus (HCV) nonstructural protein 5A (NS5A) may correlate with response to interferon in Japanese patients with chronic hepatitis C. The aim of this study was to examine whether these findings could be expanded to European patients infected with genotypes associated to low (1b) or high (3a) response rates. METHODS: Pretreatment serum samples of 66 patients with chronic HCV infection, 48 infected with genotype 1b and 18 with 3a, were analyzed. RESULTS: Among patients infected with genotype 3a, 1 of 7 long-term responders and none of 11 nonresponders showed NS5A amino acid mutations. Among patients infected with genotype 1b, all 7 long-term responders, but also 27 of 41 nonresponders, showed NS5A mutations. There was no correlation between number of mutations and response to therapy. In 10 patients, sequences obtained before and after treatment were compared and failed to show any change. Serum HCV RNA levels did not differ between patients with and without mutations in NS5A sequence. CONCLUSIONS: No significant correlation was found in patients infected with genotypes 1b or 3a between NS5A sequence and response to interferon alfa. NS5A mutations do not correlate with viral load. Changes in this region were not found during interferon alfa treatment.  相似文献   

13.
The hypervariable region 1 (HVR-1) of the putative envelope encoding E2 region of hepatitis C virus (HCV) RNA was analyzed in sequential samples from three patients with acute type C hepatitis infected from different sources to address (i) the dynamics of intrahost HCV variability during the primary infection and (ii) the role of host selective pressure in driving viral genetic evolution. HVR-1 sequences from 20 clones per each point in time were analyzed after amplification, cloning, and purification of plasmid DNA from single colonies of transformed cells. The intrasample evolutionary analysis (nonsynonymous mutations per nonsynonymous site [Ka], synonymous mutations per synonymous site [Ks], Ka/Ks ratio, and genetic distances [gd]) documented low gd in early samples (ranging from 2. 11 to 7.79%) and a further decrease after seroconversion (from 0 to 4.80%), suggesting that primary HCV infection is an oligoclonal event, and found different levels and dynamics of host pressure in the three cases. The intersample analysis (pairwise comparisons of intrapatient sequences; rKa, rKs, rKa/rKs ratio, and gd) confirmed the individual features of HCV genetic evolution in the three subjects and pointed to the relative contribution of either neutral evolution or selective forces in driving viral variability, documenting that adaptation of HCV for persistence in vivo follows different routes, probably representing the molecular counterpart of the viral fitness for individual environments.  相似文献   

14.
15.
The carboxyl-terminal three-fourths of the hepatitis C virus (HCV) NS3 protein has been shown to possess an RNA helicase activity, typical of members of the DEAD box family of RNA helicases. In addition, the NS3 protein contains four amino acid motifs conserved in DEAD box proteins. In order to inspect the roles of individual amino acid residues in the four conserved motifs (AXXXXGKS, DECH, TAT, and QRRGRTGR) of the NS3 protein, mutational analysis was used in this study. Thirteen mutant proteins were constructed, and their biochemical activities were examined. Lys1235 in the AXXXXGKS motif was important for basal nucleoside triphosphatase (NTPase) activity in the absence of polynucleotide cofactor. A serine in the X position of the DEXH motif disrupted the NTPase and RNA helicase activities. Alanine substitution at His1318 of the DEXH motif made the protein possess high NTPase activity. In addition, we now report inhibition of NTPase activity of NS3 by polynucleotide cofactor. Gln1486 was indispensable for the enzyme activity, and this residue represents a distinguishing feature between DEAD box and DEXH proteins. There are four Arg residues in the QRRGRTGR motif of the HCV NS3 protein, and the second, Arg1488, was important for RNA binding and enzyme activity, even though it is less well conserved than other Arg residues. Arg1490 and Arg1493 were essential for the enzymatic activity. As the various enzymatic activities were altered by mutation, the enzyme characteristics were also changed.  相似文献   

16.
17.
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.  相似文献   

18.
Efficient splicing of the 5'-most intron of pre-mRNA requires a 5' m7G(5')ppp(5')N cap, which has been implicated in U1 snRNP binding to 5' splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5' cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5' splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5' splice site and not with any loss of U1 snRNP binding.  相似文献   

19.
20.
An antipeptide antibody was raised against a 14-mer synthetic peptide (CDFRANPNEPA KMN) corresponding to the amino acid sequence from 491 to 504 of human cytochrome P-450 (CYP)1B1. Rabbit-derived antisera demonstrated the ability to induce moderately high antibody titers (>1:10(5)) as judged by enzyme-linked immunosorbent assay. In Western blot analysis, the purified antibody recognized a single protein band (estimated as 56 kDa) in microsomes prepared from human and rodent tissues. No significant cross-reactivity to either human CYP1A1 or human CYP1A2 protein was detected. Titration studies using recombinant human CYP1B1 and an enhanced chemiluminescence-based detection method demonstrated a minimal detection sensitivity for this antiserum at about 0.34 ng/band in 8 x 7-cm minigels. The immunoprecipitation and immunoinhibition results indicate that this antisera recognizes the nondenatured human CYP1B1 protein but does not inhibit its enzyme activity. Using this antibody, CYP1B1 protein was detected in nine different human tissues and in cultured cells induced by various chemicals. This highly specific, highly sensitive antibody provides an important tool to study tissue distribution and cellular expression levels of CYP1B1, with negligible cross-reactivity from the other members of the CYP1 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号