首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present investigation, Mg chips are recycled to produce nanostructured Mg–5wt%Al reinforced with 1, 2 and 5 wt% nanosized AlN particulates by mechanical milling (MM). Each batch of composite mixture was milled for different milling durations to produce different degrees of grain refinement. The mechanical properties such as tensile strength, ductility and hardness with respect to the effect of grain refinement, in other words, milling duration were studied. It was found that grain size played an important role in controlling ductility of the composites.  相似文献   

2.
Al–Li–SiCp composites were fabricated by a modified version of the conventional stir casting technique. Composites containing 8, 12 and 18 vol% SiC particles (40 μm) were fabricated. Hardness, tensile and compressive strengths of the unreinforced alloy and composites were determined. Ageing kinetics and effect of ageing on properties were also investigated. Additions of SiC particles increase the hardness, 0.2% proof stress, ultimate tensile strength and elastic modulus of Al–Li–8%SiC and Al–Li–12%SiC composites. In case of the composite reinforced with 18% SiC particles, although the elastic modulus increases the 0.2% proof stress and compressive strength were only marginally higher than the unreinforced alloy and lower than those of Al–Li–8%SiC and Al–Li–12%SiC composites. Clustering of SiC particles appears to be responsible for reduced the strength of Al–Li–18%SiC composite. The fracture surface of unreinforced 8090 Al-Li alloy (8090Al) shows a dimpled structure, indicating ductile mode of failure. Fracture in composites occurs by a mixed mode, giving rise to a bimodal distribution of dimples in the fracture surface. Cleavage of SiC particles was also observed in the fracture surface of composites. Composites show higher peak hardness and lower peak ageing time compared with unreinforced 8090Al alloy. Macro- and microhardness increase significantly after peak ageing. Ageing also results in considerable improvement in strength of the unreinforced 8090Al alloy and its composites. This is attributed to formation of δ (Al3Li) and S (Al2CuMg) precipitates during ageing. Per cent elongation, however, decreases due to age hardening. Al–Li–12%SiC, which shows marginally lower UTS and compressive strength than the Al–Li–8%SiC composite in extruded condition, exhibits higher strength than Al–Li–8%SiC in peak-aged condition.  相似文献   

3.
The TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3 loaded composites were prepared by sol-gel method and characterized by XRD and SEM. Their photocatalytic activities were measured through the degradation of Acid Red B under solar light irradiation. The influences of TiO2 loaded content, heat-treated temperature and time on the photocatalytic activities were reviewed. The effects of irradiation time and dye initial concentration on the photocatalytic degradation were also investigated. The results showed that the photocatalytic activity can be greatly enhanced by appropriate TiO2 loaded content.  相似文献   

4.
Al2O3/Al–AlN is a metal matrix composite (MMC) used for making heat sink of electronic devices. This paper presents the detailed investigations carried out on thermal contact resistance across this MMC contact in vacuum at different contact pressures. The experimental results are compared with the theoretical models available in the literature for metallic contacts and they are found to be in good agreement with each other.  相似文献   

5.
SrTiO3 powder has been prepared from Sr-oxalate and TiO2 precursors, instead of using titanyl-oxalate. Sr-oxalate was precipitated from nitrate solution onto the surface of suspended TiO2 powders. Crystallization of SrTiO3 from the precursor was investigated by TGA, DTA and XRD analysis. It is evident that precursor, upon heating, dehydrates in two stages, may be due to the presence of two different types of Sr-oxalate hydrates. Dehydrated precursor then decomposes into SrCO3 and TiO2 mixture. Decomposition of SrCO3 and simultaneous SrTiO3 formation occur at much lower temperature, from 800 °C onwards, due to the fine particle size of the SrCO3 and presence of acidic TiO2 in the mixture. The precursor completely transforms into SrTiO3 at 1100 °C. About 90 nm size SrTiO3 crystallites are produced at 1100 °C/1 h, due to the lower calcination temperature and better homogeneity of the precursor.  相似文献   

6.
TiO2 films were grown by atomic layer deposition on Mo electrodes in order to elucidate the dominating conductance mechanism and its dependence on the growth chemistry. TiCl4 and Ti(OC2H5)4 served as titanium precursors, and H2O or H2O2 as oxygen precursors. The films grown at lower temperatures were amorphous. With increasing growth temperatures the crystallization first started in the TiCl4–H2O process. The films grown in this process were clearly leakier compared to the films grown from Ti(OC2H5)4 and H2O and from Ti(OC2H5)4 and H2O2. In the Ti(OC2H5)4-based processes, the application of H2O2 instead of H2O resulted in the films with considerably lowered conductivity, although structural differences in these films were insignificant. Space–charge-limited currents were prevailing in all our amorphous Mo–TiO2–Al packages. Measurements at different temperatures suggested quite high trap densities likely due to the presence of impurities and structural disorder, while the strong differences in conductivity seemed to be due to different densities of gap states.  相似文献   

7.
Tensile deformation was carried out for a mechanically milled and thermo-mechanically treated Al–1.1Mg–1.2Cu (at.%) alloy at 748 K and three nominal strain rates of 10−3, 100, and 102 s−1. Despite the prevailing belief that superplasticity occurs by grain boundary sliding which requires slow strain rates at high temperatures, the maximum elongation was observed at the intermediate strain rate of 100 s−1, neither at the lowest nor the highest strain rates. In order to explain this phenomenon, the true stress–true strain behaviors at these three nominal strain rates were analyzed from a viewpoint of dislocation dynamics by computer-simulation with four variables of the thermal stress component σ*, dislocation immobilization rate U, re-mobilization probability of unlocked, immobile dislocations Ω and dislocation density at yielding ρ0. It can then be concluded that the large elongation (>400% in nominal strain) at the intermediate strain rate is produced by a combination of a very large Ω and a moderate U, resulting in a large strain rate sensitivity m value.  相似文献   

8.
The effect of porosity on the mechanical and fracture behaviour in Al–Si matrix alloy and composites reinforced with SiC particles of 10 and 20 vol.% in the as-cast state and after extrusion process has been studied. Matrix alloy and composites were fabricated by compocasting and extrusion. Samples were characterized by optical microscopy, image analyzer, scanning electron microscopy and tensile tests. The results demonstrate that hot extrusion considerably reduces the porosity, while size and distribution of the reinforcement particles are also affected. In the point of fracture behaviour, the existence of large porosity is more effective.  相似文献   

9.
Submicron scale composite fibers of SiO2/TiO2 with various compositions have been prepared by electrospinning a sol-gel precursor of tetraethyl orthosilicate(TEOS) and titanium(IV) isopropoxide(TiP), followed by calcination. Any gelator or binder has not been used in this direct preparation process for composite fibers, and the maximum amount of titania for suitable fiber formation was about 50 mol%. The sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Our results show that the surface morphology and crystallization behavior of electrospun fibers are largely influenced by the calcination temperature and the content of TiO2. XRD results also reveal that the anatase phase in composite fibers can be preserved even after high temperature processing at lower content (x = 0.1, 0.2) of titania.  相似文献   

10.
安涛  房国丽 《功能材料》2021,(3):3122-3129
TiO2/Bi2WO6异质结是当前最具潜力的一种可见光响应半导体光催化剂。以富含缺陷的TiO2纳米带为基体,采用水热法,诱导Bi2WO6在基体缺陷位点进行异质生长,从而合成具有异质结构的TiO2/Bi2WO6复合材料。利用XRD、SEM、UV-Vis等技术,分析了基体表面缺陷、Bi2WO6负载量对TiO2/Bi2WO6复合材料微观结构和性能的影响。结果表明,在基体表面引入缺陷,可以使TiO2/Bi2WO6复合材料在可见光下对有机污染物Rh B的降解速率提高约50%。Bi2WO6负载量为0.12时的TiO2/Bi2WO6复合材料,在可见光下,辐照6 min后对Rh B的降解率达99.3%,辐照30 min后对MB的降解率达99.7%,辐照15 min后对TC-HCl的降解率达87.7%。  相似文献   

11.
Mg–5Li–3Al–2Zn–xAg (x = 0, 0.1, 0.3, 0.6, 1.2) alloys were prepared by medium-frequency induction furnace under the ambient of pure argon. The effect of Ag addition on the microstructure, tensile properties, and aging behavior was investigated. Results show that the addition of Ag can restrain the decomposition from MgAlLi2 to AlLi. With the addition of Ag, the over-aging point is retarded and the over-aging phenomenon is avoided in Mg–5Li–3Al–2Zn–1.2Ag. The solid solution of Ag in matrix phases and the restraining of the decomposition from MgAlLi2 to AlLi are two aspects that strengthen the alloys.  相似文献   

12.
邓杰  陶杰  高洁  秦琦 《功能材料》2012,(7):904-907
采用原位化学氧化法,在酸性TiO2溶胶中未加分散剂制备了聚苯胺修饰的TiO2稳定溶胶,并以涂刮法在柔性导电塑料薄膜上成膜。利用FT-IR、XRD、TEM、选区电子衍射、紫外-可见光谱、光电流-电压曲线对所制备的复合溶胶及复合膜进行了表征。结果表明TiO2与聚苯胺之间实现了结构上的复合,聚苯胺的引入改善了TiO2膜对太阳光的利用率,提高了TiO2膜的光电响应性能。这种用复合溶胶制备聚苯胺/TiO2复合膜的方式扩大了成膜基底的范围。  相似文献   

13.
利用单螺杆挤出机和平板硫化机制备了聚苯乙烯/纳米二氧化钛(PS/纳米TiO2)的共混物。研究了PS/纳米TiO2(100/1.5)中聚苯乙烯接枝马来酸酐(PS-MAH)加入量对共混物的拉伸强度、冲击强度、微观结构的影响。结果表明:当PS-MAH加入PS/纳米TiO2中20g时,共混物的拉伸强度达到最大值。紫外光照射实验结果表明,PS-MAH的加入可有效地提高PS/纳米TiO2复合材料的抗老化性能,与PS/TiO2复合材料相比拉伸强度提高30%。  相似文献   

14.
New biocompatible and biodegradable Mg–Nb composites used as bone implant materials are fabricated through powder metallurgy process. Mg–Nb mixture powders are prepared through mechanical milling and manual mixing. Then, the Mg–Nb composites are fabricated through cold press and sintering processes. The effect of mechanical milling and Nb particles as reinforcements on the microstructures and mechanical properties of Mg–Nb composites are investigated. The mechanical milling process is found to be effective in reducing the size of Mg and Nb particles, distributing the Nb particles uniformly in the Mg matrix and obtaining Mg–Nb composite particles. The Mg–Nb composite particles can be bound together firmly during the sintering process, result in Mg–Nb composite structures with no intermetallic formation, lower porosity, and higher mechanical properties compared to composites prepared through manual mixing. Interestingly, the mechanical properties of manually mixed Mg–Nb composites appear to be even lower than that of pure Mg.
  相似文献   

15.
When elemental Ti and B powders were added to molten Al at above 1000°C, fine in situ TiB2 particulates were formed through Al–Ti–B exothermic reaction. By optimising the nucleation of TiB2, the tensile and yield strengths of a synthesised Al–15Vf%TiBs composite were twice that of matrix material. Modification of Al-matrix with 4.5 wt%Cu tripled the tensile and yield strengths at peak-aged condition. Owing to the co-presence of brittle Al3Ti flakes with TiB2 particles in the composites synthesised by the Al–Ti–B system, ductility was reduced to 68% and 84% in composites with Al- and Al–Cu matrices, respectively. When the (Ti + B) mixture was incorporated with 3 wt%C, TiB2 and TiC reinforcing phases were simultaneously produced in the composite with Al–Cu matrix. Such an approach reduced Al3Ti compound in the composite considerably. Although the presence of Cu in the composite was found to promote the formation of Al3Ti, its effect on the fluidity caused the melt recovery to increase from 33% to 52%.  相似文献   

16.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

17.
In this study, mechanically alloyed Al–12Si/SiO2 composite powder was deposited onto an aluminum substrate by atmospheric plasma spraying. The composite coating consisting of in situ formed Al2O3 reinforced hypereutectic Al–18Si matrix alloy was achieved. The produced coatings were extensively analyzed with respect to X-ray diffraction (XRD). The XRD patterns of the coatings include Al, Si and Al2O3 phase formation. Mechanical properties of layers were examined by Dynamic Ultra-micro hardness test machine for estimating Young’s modulus due to load–unload sensing analysis. The hardness and Young’s modulus of the composite coatings sprayed at different plasma current and the distance were measured under 200, 400, 600, 800 and 1000 mN of applied peak loads by indentation technique. The effects of spray distance and arc current on the hardness and Young’s modulus have been investigated. Additionally, it was observed that the arc current and spray distance strongly influence the mechanical properties of the coatings.  相似文献   

18.
Poly phenylenediamine was synthesized from 1,4-phenylenediamine in presence of potassium persulphate and salicylic acid. The structure of the formed poly phenylenediamine was traced using FTIR and its morphology was examined by transmittance electron microscope (TEM). Gel permeation chromatography (GPC) was used to evaluate the polymer molecular weight which showed that the value of its molar mass is 20,000 g mol−1 and it has polydispersity index of 1.01. Different concentrations of TiO2 were incorporated in the poly phenylenediamine structure via coordination bond between the oxygen atom of TiO2 and the hydrogen atom of N–H group of polymer. The prepared composites were characterized using FTIR, TA, TEM and SEM/EDX. The TEM micrographs revealed that the composites have 2-D network structure and its morphology changed from a dendritic structure for the pure polymer to layered structure of the composite. The polymer and its composite are completely insulators. Their hydrogen storage capacity has been estimated at −193 °C and the composite reported higher hydrogen uptake values than the pure polymer. The reason is suggested to be due to the layered structure of composite which gives it the privilege to store more hydrogen in its interlayer vicinity.  相似文献   

19.
The cavitation behavior and forming limits of a high-strain-rate superplastic 21 vol.% SiC whisker-reinforced Al–4.4Cu–1.5Mg (Al–4.4Cu–1.5Mg/21SiCW) under biaxial stress states were investigated in this paper. The composite sheet was bulged using dies with aspect ratios of 1:1, 4:3 and 2:1 at the constant applied stress of 4 MPa and at the optimal temperature of 793 K determined from superplastic tensile tests. The thickness distributions of bulged diaphragms were measured at different strain levels. For diaphragms deformed equibiaxially, a good agreement between experimental thickness distributions and the theoretical predictions of Cornfield and Johnson (Int. J. Mech. Sci. 12 (1970) 479) was observed at fractional heights of the deformed diaphragms ranging from 0.4 to 1.0. The cavitation behavior of the composite under biaxial tension was compared with that of uniaxial tension. It was found that at a similar effective strain, the amount of cavities obtained under equibiaxial tension is slightly greater than that under uniaxial tension, and the cavity growth rate parameter under uniaxial tension was also slightly larger than that of uniaxial tension. The influence of stress state on cavity growth rate was discussed. Limit strains of Al–4.4Cu–1.5Mg/21SiCW at different stress ratios were predicted based on a plastic damage model recently developed for superplastic materials (Chan and Chow, Int. J. Mech. Sci., submitted). The trend of the prediction was in good agreement with the experimental findings.  相似文献   

20.
A novel In2S3/TiO2 composite with visible-light photocatalytic activity was prepared by a chemical precipitation method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope and UV–vis diffuse reflectance spectroscopy. Under both UV- and visible-light irradiation, the In2S3/TiO2 composite shows good photocatalytic activity to degrade methyl orange, ascribed to the absorption of visible light by In2S3 sensitizer and enhanced separation of photoinduced electron–hole pairs in the composite semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号