首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.  相似文献   

2.
应用液态金属冷却(LMC)和高速凝固(HRS)定向凝固技术,对DZ125高温合金叶片状铸件在不同抽拉速率下的组织演变规律进行了研究,并对比研究了LMC和HRS法所得铸件的微观组织.结果表明,同一定向凝固方法下,随抽拉速率的提高,铸件枝晶组织及γ′析出相得到细化;应用LMC技术所制备铸件的枝晶组织和γ′析出相较相同抽拉速率HRS方法时更为细小;相同工艺参数下LMC和HRS方法所制备铸件一次枝晶间距的差异随铸件壁厚及抽拉速率的增大而更显著.通过对固/液界面前沿温度梯度进行估算发现,LMC方法可获得更高的温度梯度,且其温度梯度受抽拉速率变化影响较HRS更小.除70μm/s抽拉速率外,LMC法所得γ+γ′共晶组织的含量均显著少于HRS方法;70μm/s抽拉速率时,LMC法产生的偏析较严重,而其余凝固条件下偏析程度较相同工艺参数下HRS轻.110μm/s抽拉速率时,HRS方法较LMC方法制备铸件中MC型碳化物尺寸更大.  相似文献   

3.

Stray grains, the most serious casting defect, mainly occur in the platform because of the abrupt transition of the cross-section in the directional solidification of superalloy single-crystal blades. A new mould baffle technology based on 3D printing and gelcasting is proposed herein to reduce the formation of stray grains in the platform. The influence of the proposed mould baffle technology on the temperature field in the platform during solidification was investigated by simulation and experiment. The numerical simulation results indicate that the proposed mould baffle technology can effectively hinder the radiation and heat dissipation at the platform extremities, and therefore, reduce undercooling in the platform and the formation of stray grains during directional solidification. Casting trials of a hollow turbine blade were conducted using CMSX-4 superalloy. The trial results demonstrate the potential of the proposed approach for manufacturing single-crystal superalloy blades.

  相似文献   

4.
《Acta Materialia》2001,49(6):1051-1062
In order to extend the life cycle of modern single-crystal (SX) high-pressure high-temperature gas turbine blades, repair of cracked or worn parts is of great interest. The success of the repair technique depends critically on a close process control in order to ensure SX repair. Based on solidification theory a process called epitaxial laser metal forming (E-LMF) has been developed. This paper presents the important concepts necessary for any process control for SX repair based on processing maps which relate the expected solidification microstructures and growth morphologies to the processing conditions. These maps are obtained in two steps. Firstly, the relationships between local solidification conditions and the resulting solidification microstructures, i.e. columnar or equiaxed, are formulated. Secondly, the local solidification conditions as a function of the laser processing parameters are calculated with an analytical heat flux model. By a combination of both approaches, processing–microstructure maps are obtained which define processing windows for SX generation and repair by laser deposition.  相似文献   

5.
Luo  Liang  Xiao  Cheng-bo  Chen  Jing-yang  Li  Qing  Dai  Sheng-long 《中国铸造》2019,16(1):8-13
The influences of different directional solidification processes, i.e., the high rate solidification(HRS) and liquid metal cooling(LMC), on microstructure and stress rupture property of DD488 alloy were investigated. The DD488 alloy was directional solidified by both HRS and LMC processes. The microstructure and stress rupture properties at 980 ℃/250 MPa were investigated by using optical microscopy(OM), scanning electron microscopy(SEM), electron microprobe analyzer(EPMA), transmission electron microscopy(TEM) and stress rupture testing. The results indicated that the LMC process refined the primary dendrite arm and decreased the microporosity volume fraction and solidification segregations of Cr and Co in as-cast DD488 alloy. After standard heat treatment of 1,260 ℃/4 h, AC(air cooling) + 1,080 ℃/4 h, AC + 870 ℃/24 h, AC, the γ′ morphology in LMC alloy was more cuboidal than that in HRS alloy, and the γ′ volume fraction of LMC alloy was higher than that of HRS alloy. The stress rupture life at 980 ℃/250 MPa of HRS alloy was 76.8 h, and it increased to 110.0 h in LMC al oy. The LMC process increased the stress rupture life due to the higher γ′ volume fraction, more perfect rafting structure and finer interfacial dislocation networks.  相似文献   

6.
Numerical methods were used to examine the influence of casting and baffle geometry, mold thickness as well as withdrawal speed on solidification conditions and resulting microstructure. Achievable thermal gradients, stability limits and primary dendrite arm spacings for Liquid Metal Cooling (LMC) and High Rate Solidification (HRS) process are reported. Calculations were compared with experimental results from the literature and good agreement was found. A thermal gradient almost 1.8 times higher was observed for the use of LMC in the case of simple cylindrical castings. In contrast, a thermal gradient up to three times higher was calculated with LMC compared to HRS for large section size castings. The numerical investigations indicate that the nature of the baffle has a stronger effect than the different mechanism of heat dissipation when HRS and LMC are compared.  相似文献   

7.
高温合金单晶叶片定向凝固过程的宏微观数值模拟   总被引:1,自引:0,他引:1  
基于有限元和Panda热动力学数据库建立了单晶叶片真空熔模铸造定向凝固过程的数理模型,对不同工艺下单晶叶片试样凝固过程中的温度场、糊状区演变及枝晶二次臂间距进行了仿真,研究了缺陷形成机理和规律。计算结果与实验吻合良好。计算结果显示,拉速大时二次臂细小,但杂晶产生的趋势加大;拉速小时杂晶不易形成,但二次臂增粗。对实际空心薄壁复杂单晶叶片定向凝固过程的模拟研究表明,二次臂间距在叶身部分分布比较均一, 3.5 mm/min抽拉时有可能在缘板处产生杂晶。采用变拉速工艺,不仅可避免杂晶缺陷,还能保证工件大部分枝晶细小,提高生产效率和成品率  相似文献   

8.
为了提高单晶涡轮叶片的气冷效果,其冷却通道内部结构越来越复杂,导致制备过程中凝固缺陷出现频率增高,凝固缺陷的形成与定向凝固过程中温度场演变密切相关.采用ProCAST数值模拟的方法研究了铸件结构对定向凝固过程中温度场的影响.结果 表明,单晶高温合金铸件尺寸突变和渐变都会导致液固界面位置和温度梯度的变化;相比渐变截面结构...  相似文献   

9.
Directional solidified turbine blades of Ni-based superalloy are widely used as key parts of the gas turbine engines.The mechanical properties of the blade are greatly influenced by the final microstructure and the grain orientation determined directly by the grain selector geometry of the casting.In this paper,mathematical models were proposed for three dimensional simulation of the grain growth and microstructure evolution in directional solidification of turbine blade casting.Ray-tracing method was applied to calculate the temperature variation of the blade.Based on the thermo model of heat transfer,the competitive grain growth within the starter block and the spiral of the grain selector,the grain growth in the blade and the microstructure evolution were simulated via a modified Cellular Automaton method.Validation experiments were carried out,and the measured results were compared quantitatively with the predicted results.The simulated cooling curves and microstructures corresponded well with the experimental results.The proposed models could be used to predict the grain morphology and the competitive grain evolution during directional solidification.  相似文献   

10.
定向凝固叶片在凝固过程中产生的热应力会导致叶片最终存在残余应力、变形甚至裂纹而使得叶片报废,故研究叶片凝固过程的热应力变化具有重要意义.通过数值模拟的方法可以对叶片的凝固过程热应力进行模拟,得出应力变化情况,对叶片可能产生的缺陷进行预测.文中采用商用软件ProCAST对定向凝固简化空心叶片的热应力场进行数值模拟,分析空心叶片凝固过程中的热应力变化情况,并通过切割法测量了铸件的残余应力,模拟结果与实验结果吻合较好.  相似文献   

11.
Abstract

The repair of gas turbine components is of importance both commercially and scientifically to ensure cost effective repair schemes that will extend the lives of hot end components such as blades and stators. The present communication reports the results of a metallographic and orientation imaging microscopy study of weld cracking observed in the gas tungsten arc repair welds of a polycrystalline (IN738LC), a directionally solidified (Rene 80) and a proprietary single crystal (SX) alloy. The three alloys were welded with low, intermediate and high strength weld fillers, using a weld build-up approach rather than a conventional weld repair of a through thickness crack. This procedure would be applicable for example to worn area on the tips of turbine blades. Inhomogeneous initial microstructures and those from solidification processes led to extensive heat affected zone microfissuring in the IN738LC alloy, associated with MC carbide liquation, liquation of gamma prime (γ′), segregation of boron and strain effects from precipitation of γ′ in both single and double pass welds. As observed previously in a V shaped weld preparation, the extent of microfissuring in alloy IN738LC increased substantially from the use of the low and intermediate strength weld fillers, to extensive heat affected zone microfissuring by using the high strength IN738 filler. In the directionally solidified Rene 80 welds, due to the reduction in grain boundary area per unit volume, only minor heat affected zone cracking was observed, while the SX alloy did not crack at all. The absence of any cracks in the SX alloy welds despite the presence of stray grains in the fusion zone appears to be related to reduced stress levels in the welds due to the choice of welding technique and the welding parameters.  相似文献   

12.
Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390 alloy finger-plate casting was cast against an H13 steel die on a cold-chamber HPDC machine. The interfacial heat transfer behavior at different positions of the die was carefully studied using an inverse approach based on the temperature measurements inside the die. Furthermore, the filling process and the solidification rate in different finger-plates were also given to explain the distribution of interfacial heat flux(q) and interfacial heat transfer coefficient(h). Measurement results at the side of sprue indicates that qmax and hmax could reach 9.2 MW·m~(-2) and 64.3 kW ·m~(-2)·K~(-1), respectively. The simulation of melt flow in the die reveals that the thinnest(T_1) finger plate could accelerate the melt flow from 50 m·s~(-1) to 110 m·s~(-1). Due to this high velocity, the interfacial heat flux at the end of T_1 could firstly reach a highest value 7.92 MW·m~(-2) among the ends of T_n(n=2,3,4,5). In addition, the q_(max) and h_(max) values of T_2, T_4 and T_5 finger-plates increase with the increasing thickness of the finger plate. Finally, at the rapid decreasing stage of interfacial heat transfer coefficient(h), the decreasing rate of h has an exponential relationship with the increasing rate of solid fraction(f).  相似文献   

13.
通过模拟和实验的方法对比研究了重燃叶片定向凝固过程宏观温度场及微观组织的变化规律。建立了非均匀网格的求解模型,提高了计算效率。基于温度场的模拟结果分析了糊状区的演化规律。采用线性插值算法结合元胞自动机有限差分(cellular automaton finite difference,CAFD)模型模拟了叶片的微观组织,并和实验进行了对比,模拟和实验结果吻合良好。讨论了几种常见晶粒缺陷产生的原因,提出了预防措施。采用电子背散射衍射(electron backscattered diffraction,EBSD)技术进一步探讨了晶粒的竞争生长行为。建立了枝晶臂间距的计算模型,模拟了叶片的枝晶臂间距分布,并进行实验观察,分析了枝晶臂间距的变化规律。从宏、微观的角度解释了叶片的凝固特征,为实际生产提供帮助。  相似文献   

14.
Abstract

In the development of turbine blades, solidification structures have progressed from equiaxed to directionally solidified (DS) and then to single crystal (SX). The transition from DS to SX was achieved by introducing a grain selector which consists of two parts: a starter block referring to the grain orientation optimisation and a spiral part to ensure that only one grain can eventually survive and grow into the blade. With emphasis on the spiral selector, the microstructure evolution and grain competitive growth is visualised using a coupled macroscale ProCAST and mesoscale cellular automaton finite element (CAFE) model in this study. To improve the efficiency of the spiral grain selector and to save cost in casting, the effects of spiral geometries on the grain selection are investigated. Simulation results reveal that the spiral becomes more efficient in grain number selection with a smaller spiral thickness (d T) and a larger spiral diameter (d S).  相似文献   

15.
考虑炉壁温度变化的高温合金叶片定向凝固过程模拟   总被引:1,自引:0,他引:1  
考虑炉壁温度的变化,基于Monte Carlo射线追踪法建立了高温合金叶片定向凝固过程的温度场计算改进模型.通过法向射线加密提高加热炉炉壁的辐射计算精度,并采用叶片三维有限差分网格和加热炉二维网格混合使用的方法提高计算效率.叶片和炉壁的温度曲线模拟与实验结果吻合良好,改进模型反映了抽拉过程中炉壁温度的变化及其对叶片内部温度分布的影响,提高了叶片温度的模拟精度.  相似文献   

16.
采用双区加热和液态金属冷却法 (LMC) 相结合, 对一种含4%Re (质量分数) 的镍基单晶高温合金进行了高温度梯度定向凝固. 结果表明: 与传统的“ 高速凝固法 (HRS) ” (温度梯度G=20-40 K/cm, 抽拉速率V=50-100 μm/s, 一次枝晶间距 λ1=200-400 μm)相比, 该技术可以显著提高凝固界面前沿的温度梯度 (G=238 K/cm) 和抽拉速率 (V=500 μm/s). 随着抽拉速率的提高, 凝固界面形态呈现出平面、胞状、粗大枝晶和细枝晶形态, 一次枝晶间距不断减小, 通过固态相变析出的γ' 强化相也被显著细化, 当G=238 K/cm, V=500 μm/s时, λ1和枝晶干γ' 相平均尺寸分别减小到61.3和0.04 μm. 电子探针测定表明, 随着抽拉速率的提高, 枝晶偏析呈现先增大后减小的趋势. 这是高温度梯度条件下, 固相反扩散作用强烈影响元素在枝晶中分布的结果.  相似文献   

17.
《中国铸造》2016,(2):107-113
To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb (at.%) aloy,Bridgman-type directional solidiifcation and thermodynamics calculations were performed on the aloy. The microstructures, micro-segregation and solidiifcation path were investigated. The results show that the β phase is the primary phase of the aloy at growth rates of 5-20 μm?s-1 under the temperature gradients of 15-20 K?mm-1, and the primary phase is transformed into an α phase at relatively higher growth rates (V >20 μm?s-1). The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb aloy at a growth rate of 10 μm?s-1 under a temperature gradient of 15 K?mm-1. The increase of temperature gradient to 20 K?mm-1 can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the aloy and induce the solidiifcation path to become complicated. The equilibrium solidiifcation path of Ti-45Al-5Nb aloy can be described as , in which βR and γR mean the residual β andγ.  相似文献   

18.
Directional solidification was used to produce turbine blades by the Bridgman method. NITAC alloys with various carbon contents were investigated; the optimum range was found to be 0.40 to 0.48%. Within this range, except for the blade locking piece edges, the blade structure consisted predominantly of aligned eutectics. The in- situ eutectics were aligned tantalum fibers embedded in a γ- phase matrix. The blades were produced using an alloy displacement rate of 1.86 x 10 - 6 m/s. Measurements of fiber spacings along the blade height indicated that the rate of displacement of the solidification front exhibited some variations. These variations were closely associated with dimensional changes in the turbine blade cross sections.  相似文献   

19.
Liu  Xiao-fu  Lou  Yan-chun  Yu  Bo  Su  Gui-qiao  Li  Chang-chun  Guo  Xin-li  Li  Biao  Shui  Guo-yan 《中国铸造》2019,16(1):23-30
In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation 001, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.  相似文献   

20.
高温合金叶片定向凝固过程中辐射换热的计算   总被引:2,自引:0,他引:2  
提出改进型Monte Carlo射线追踪法进行辐射换热计算,通过子空间的划分,并结合定向凝固的特点回避了传统辐射换热计算中角系数的直接计算,节省了计算时间.把该方法嵌入自行开发的三维模拟软件对柱状晶和单晶叶片的定向凝固过程进行了温度场模拟,并对实际叶片凝固过程进行温度场测试,模拟结果与实测结果较好吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号