首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.  相似文献   

2.
0ne-Dimensional (l-D) Nanoscale Heterostructures   总被引:1,自引:1,他引:0  
One-dimensional (l-D) nanostructures have been attracted much attention as a result of their exceptional properties, which are different from bulk materials. Among 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Many kinds of methods have been developed for the synthesis of 1-D nanoscale heterostructures. This article reviews the most recent development, with an emphasize on our own recent efforts, on 1-D nanoscale heterostructures, especially those synthesized from the vapor deposition methods, in which all the reactive precursors are mixed together in the reaction chamber. Three types of 1-D nanoscale heterostructures, defined from their morphologies characteristics, are discussed in detail, which include 1-D co-axial core-shell heterostructures, 1-D segmented heterostructures and hierarchical heterostructures. This article begins with a brief survey of various methods that have been developed for synthesizing 1-D nanoscale heterostructures and then mainly focuses on the synthesis, structures and properties of the above three types of nanoscale heterostructures. Finally, this review concludes with personal views towards the topic of 1-D nanoscale heterostructures.  相似文献   

3.
One-Dimensional (1D) ZnS Nanomaterials and Nanostructures   总被引:1,自引:0,他引:1  
One-dimensional (1D) nanomaterials and nanostructures have received much attention due to their potential interest for understanding fundamental physical concepts and for applications in constructing nanoscale electric and optoelectronic devices. Zinc sulfide (ZnS) is an important semiconductor compound of Ⅱ-Ⅵ group, and the synthesis of 1D ZnS nanomaterials and nanostructures has been of growing interest owing to their promising application in nanoscale optoelectronic devices. This paper reviews the recent progress on 1D ZnS nanomaterials and nanostructures, including nanowires, nanowire arrays, nanorods, nanobelts or nanoribbons, nanocables, and hierarchical nanostructures etc. This article begins with a survey of various methods that have been developed for generating 1D nanomaterials and nanostructures, and then mainly focuses on structures, synthesis, characterization, formation mechanisms and optical property tuning, and luminescence mechanisms of 1D ZnS nanomaterials and nanostructures. Finally, this review concludes with personal views towards future research on 1D ZnS nanomaterials and nanostructures.  相似文献   

4.
Two-dimensional(2D)materials,such as transition metal dichalcogenides(TMDs),black phosphorus(BP),MXene and borophene,have aroused extensive attention since the discovery of graphene in 2004.They have wide range of applications in many research fields,such as optoelectronic devices,energy storage,catalysis,owing to their striking physical and chemical properties.Among them,anisotropic 2D material is one kind of 2D materials that possess different properties along different directions caused by the intrinsic anisotropic atoms5 arrangement of the 2D materials,mainly including BP,borophene,low-symmetry TMDs(ReSe2 and ReSa)and group IV monochalcogenides(SnS,SnSe,GeS,and GeSe).Recently,a series of new devices has been fabricated based on these anisotropic 2D materials.In this review,we start from a brief introduction of the classifications,crystal structures,preparation techniques,stability,as well as the strategy to discriminate the anisotropic characteristics of 2D materials.Then,the recent advanced applications including electronic devices,optoelectronic devices,thermoelectric devices and nanomechanical devices based on the anisotropic 2D materials both in experiment and theory have been summarized.Finally,the current challenges and prospects in device designs,integration,mechanical analysis,and micro-/nano-fabrication techniques related to anisotropic 2D materials have been discussed.This review is aimed to give a generalized knowledge of anisotropic 2D materials and their current devices applications,and thus inspiring the exploration and development of other kinds of new anisotropic 2D materials and various novel device applications.  相似文献   

5.
正Light-emitting diodes (LEDs) have wide applications in the area of lighting,medical devices,display screens,etc. Owing to the excellent optoelectronic properties and the facile solution processing methods,organometal halide perovskites are extensively studied and proved to be promising light-emitting materials to fabri-  相似文献   

6.
In this review, the progress made during the last two years with respect to the syntheses and novel properties of one-dimensional (1D) ZnS nanostructures is presented. Primarily the research on 1D ZnS nanostructures has been of growing interest owing to their promising applications in nanoscale optoelectronic devices. Diverse 1D ZnS nanostructures with delicately-tuned morphologies, sizes, and microstructures have been synthesized through relatively simple and well-controlled techniques. Some novel properties of the nanomaterials have been explored and the relationships between their structural features and functions have been understood gradually.  相似文献   

7.
As promising candidates for energy-storage devices,supercapacitors (SCs) have attracted considerable attention because of their unique features,such as their high power density,outstanding rate capability,excellent cycling performance,and safety.The recent boom in portable electronic devices requires high-performance SCs that are flexible,simplified,thin,and integrated.Tremendous efforts have been directed towards the design and integration of planar microSCs (MSCs) based on different active electrode materials by various methods.This review highlights the recent developments in the device design of flexible planar MSCs and their integration with other electronic devices.The current challenges and future prospects for the development of flexible MSCs are also discussed.  相似文献   

8.
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.  相似文献   

9.
Low-symmetry two-dimensional(2D)materials,with unique in-plane direction-dependent optical,electrical,and thermoelectric properties,have been intensively studied for their potential application values in advanced electronic and optoelectronic devices.However,since anisotropic 2D materials are highly sensitive to the environmental factors,researches on their high-performance field-effect transistors(FETs)are still limited.Here,we report a high-performance SnSe FET based on a van der Waals(vdWs)heterostructure of SnSe encapsulated in hexagonal boron nitride(/7BN)together with graphene contacts.The device exhibits a high on/off ratio exceeding 1 × 109,and a carrier mobility of 118 cm2·V-1s-1.Our work highlights low-symmetry 2D SnSe holds potential to be used for designing excellent electronic devices.  相似文献   

10.
The cooperative interaction distance measure has been proposed as a novel law pertaining to dialectics of nature,and has been extensively carried out in the design of functional nanomaterials.However,the temporal and spatial dimensions are akin to yin and yang,and thus temporal regulation needs to be accounted for when implementing the above-mentioned principle.Here,we summarize recent advances in temporally and spatially regulated materials and devices.We showcase the temporal regulation of organic semiconductors for organic photovoltaics (OPVs) using the example of exciton lifetime manipulation.As an example of spatial regulation,we consider the distribution of charge carriers in core-shell quantum dot (QD) nanocrystals for modulating their optical properties.Long exciton lifetime can in principle increase the exciton diffussion length,which is desiable for high-efficiency large-area OPV devices.Spatially regulated QDs are highly valuable emitters for light-emitting applications.We aim to show that cooperative spatio-temporal regulation of nanomaterils is of vital importance to the development of functional devices.  相似文献   

11.
The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D‐materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self‐assembly monolayers, and covalent organic frameworks. The protocols for 2D‐organic‐crystal‐fabrication and ‐patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented.  相似文献   

12.
One-dimensional (1D) organic and organometallic nanomaterials are of considerable interests for both fundamental research and potential applications. They are likely to play critical roles in improving the efficiency of various electronic, photonic, biosensing devices, etc. In this context, the authors present a comprehensive review of current research on 1D organic and organometallic nanostructures. The synthetic strategies for achieving the 1D growth are elucidated by four categories: (1) template-based synthesis, (2) vapor-solid method, (3) solution-based self-assembly, and (4) dictation by the anisotropic nature. The unique thermal, optical, electronic, field emission properties and biocidal activity of 1D organic and organometallic nanostructures are consequently highlighted. Some promising applications in (integrated) molecular electronic, optoelectronic and photonic devices are also discussed.  相似文献   

13.
In recent years, metal halide perovskites (MHPs) have attracted attention as semiconductors that achieve desirable properties for optoelectronic devices. However, two challenges—instability and the regulated nature of Pb —remain to be addressed with commercial applications. The development of Pb-free halide double perovskite (HDP) materials has gained interest and attention as a result. This family offers potential in the field of optoelectronic devices through flexible material designs and compositional adjustments. We highlight recent progress and development in halide double perovskites and encompass the synthesis, optoelectronic properties, and engineering of the electronic structures of these materials along with their applications in optoelectronic devices. Computational and data-driven statistical methods can also be used to explore mechanisms and discover promising candidate double perovskites.  相似文献   

14.
Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed.  相似文献   

15.
16.
This article presents a comprehensive review of recent progress of research dedicated to low‐dimensional nanomaterials constructed from functional low‐molecular‐weight organic compounds, whose optoelectronic properties are fundamentally different from those of their inorganic counterparts. After introducing the development of inorganic and organic macromolecular nanomaterials, we begin with a general review of the construction strategies for achieving both zero‐dimensional (0D) and one‐dimensional (1D) nanostructures from small organic functional molecules. We then provide an overview of the unique optoelectronic properties induced by molecular aggregation in the nanostructures. Special emphasis is put on the luminescent properties that are different from those of the corresponding bulk materials, such as aggregation‐induced enhanced emission, fluorescence narrowing, multicolor emission, and tunable and switchable emissions from doped nanostructures. We conclude with a summary and our personal view of the direction of future development of organic opto‐functional nanomaterials and devices.  相似文献   

17.
The discovery of two-dimensional (2D) materials with unique electronic, superior optoelectronic, or intrinsic magnetic order has triggered worldwide interest in the fields of material science, condensed matter physics, and device physics. Vertically stacking 2D materials with distinct electronic and optical as well as magnetic properties enables the creation of a large variety of van der Waals heterostructures. The diverse properties of the vertical heterostructures open unprecedented opportunities for various kinds of device applications, e.g., vertical field-effect transistors, ultrasensitive infrared photodetectors, spin-filtering devices, and so on, which are inaccessible in conventional material heterostructures. Here, the current status of vertical heterostructure device applications in vertical transistors, infrared photodetectors, and spintronic memory/transistors is reviewed. The relevant challenges for achieving high-performance devices are presented. An outlook into the future development of vertical heterostructure devices with integrated electronic and optoelectronic as well as spintronic functionalities is also provided.  相似文献   

18.
Yang R  Chen G  Dresselhaus MS 《Nano letters》2005,5(6):1111-1115
The heteroepitaxial growth of crystalline core-shell nanostructures of a variety of materials has become possible in recent years, allowing the realization of various novel nanoscale electronic and optoelectronic devices. The increased surface or interface area will decrease the thermal conductivity of such nanostructures and impose challenges for the thermal management of such devices. In the meantime, the decreased thermal conductivity might benefit the thermoelectric conversion efficiency. In this paper, we present modeling results on the lattice thermal conductivity of core-shell and tubular nanowires along the wire axis direction using the phonon Boltzmann equation. We report the dependence of the thermal conductivity on the surface conditions and the core-shell geometry for silicon core-germanium shell and tubular silicon nanowires at room temperature. The results show that the effective thermal conductivity changes not only with the composition of the constituents but also with the radius of the nanowires and nanopores due to the nature of the ballistic phonon transport. The results in this work have implications for the design and operation of a variety of nanoelectronic devices, optoelectronic devices, and thermoelectric materials and devices.  相似文献   

19.
Organic crystalline materials are used as dyes/pigments, pharmaceuticals, and active components of photonic and electronic devices. There is great interest in integrating organic crystals with inorganic and carbon nanomaterials to create nanocomposites with enhanced properties. Such efforts are hampered by the difficulties in interfacing organic crystals with dissimilar materials. Here, an approach that employs organic nanocrystallization is presented to fabricate solution‐processed organic nanocrystal/carbon nanotube (ONC/CNT) hybrid materials based on readily available organic dyes (perylene diimides (PDIs)) and carbon nanotubes. The hybrids are prepared by self‐assembly in aqueous media to afford free‐standing films with tunable CNT content. These exhibit excellent conductivities (as high as 5.78 ± 0.56 S m?1), and high thermal stability that are superior to common polymer/CNT hybrids. The color of the hybrids can be tuned by adding various PDI derivatives. ONC/CNT hybrids represent a novel class of nanocomposites, applicable as optoelectronic and conductive colorant materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号