首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
工艺参数优化对提高切削过程的加工效率和加工成本具有重要意义。将铣削系统动力学作为主要约束条件,提出端面铣削工艺参数的多目标优化模型。基于铣削系统动力学分析,得到了综合切削稳定性、工件表面粗糙度、主轴转速、切削力、切削功率等约束的工艺参数多目标优化模型。通过调节权重系数实现优化方向的控制,并采用快速粒子群算法对工艺参数进行优化计算。工艺优化实例及试验表明,采用基于动力学约束的工艺参数优化方法可以获得较好的工艺参数优化结果。  相似文献   

2.
车齿工艺具有加工效率高、适用齿轮类型广等优点,近年来受到越来越多的关注。车齿加工切削温度预测与工艺参数优化对提高刀具寿命、改善加工质量、降低残余应力等具有重要意义。首先,根据车齿工艺运动学原理,构建了车齿刀具和齿轮工件的实体模型,基于Deform有限元仿真获得单刀齿切削过程的前刀面温度云图;其次,针对切削速度、进给量和刀具与工件轴交角等工艺参数对前刀面最高温度的影响,采用响应曲面法建立了多元参数作用下的切削温度预测模型;最后,提出了以切削温度约束下加工效率最高为目标的工艺参数优化方法,并结合3组工艺参数优化实例,对比了最优参数下切削温度的预测值和仿真结果之间的误差,验证了所提出预测优化模型的有效性。结果表明,单参数下,轴交角对切削温度影响最大;多元参数下,切削速度-轴交角对切削温度影响最大;并且,优化后的预测值与仿真结果误差在合理范围内。研究结果为提高车齿工艺加工质量与刀具寿命等提供了方法支撑。  相似文献   

3.
以螺旋铣孔工艺时域解析切削力建模、时域与频域切削过程动力学建模、切削颤振及切削稳定性建模为基础,研究了螺旋铣孔的切削参数工艺规划模型和方法。切削力模型同时考虑了刀具周向进给和轴向进给,沿刀具螺旋进给方向综合了侧刃和底刃的瞬时受力特性;动力学模型中同时包含了主轴自转和螺旋进给两种周期对系统动力学特性的影响,并分别建立了轴向切削稳定域和径向切削稳定域的预测模型,求解了相关工艺条件下的切削稳定域叶瓣图。在切削力和动力学模型基础之上,研究了包括轴向切削深度、径向切削深度、主轴转速、周向进给率、轴向进给率等切削工艺参数的多目标工艺参数规划方法。最后通过试验对所规划的工艺参数进行了验证,试验过程中未出现颤振现象,表面粗糙度、圆度、圆柱度可以达到镗孔工艺的加工精度。  相似文献   

4.
《工具技术》2013,(10):47-51
基于对高速切削工艺和多轴加工特点的分析,探讨保证高速高效和优质加工的工艺策略及选定切削参数的方法。通过研究高速切削机理及加工工艺特性,确定高速切削加工所面临的主要问题是如何同时保证高的加工效率、质量和刀具寿命。提出以铣刀有效直径和有效线速度确定切削参数,并导出有效直径和有效速度及其转速的计算方法。给出了高速铣削加工的工艺策略和合理设置铣削参数,可为高速切削编程提供技术参考。  相似文献   

5.
为了便于过程控制和工艺参数选择,利用直线刃阴极进行了电解加工平面的试验,总结了工艺参数对切削深度和表面质量的影响规律;基于电解加工理论,建立并求解了加工过程电场的数学模型,得到了工件阳极表面的变化曲线,分析了切削深度实测值与计算值的误差,结果表明:可以利用该模型进行电解加工过程的模拟、工艺参数的预测以及加工精度的分析。  相似文献   

6.
针对干式切削加工能耗相对较高的问题,通过对数控铣床干切削加工过程的实时功率进行数据采集,采用响应曲面方法描述和分析了数控铣削加工各主要工艺参数与单位切削能耗和机床能效之间的定量关系。通过工艺参数对单位切削能耗和单位机床能耗的响应曲面及降维平面进行了分析,结果表明,增大工艺参数和材料去除率对于提升机床能效具有积极作用。此外,降低机床基础能耗占比、提高切削能耗占比,能有效提高干式切削机床能效。  相似文献   

7.
王振宇  顾京 《机电工程技术》2007,36(10):29-29,96
设置切削加工工艺参数足数控高速加工领域中一项重要工作.该文以一个高速铣削加工个案为例,通过对获取、管理和重复使用切削工艺参数知识方法的分析,介绍了以知识驱动的方式,在UGNX中开发并应用加工参数库的有效方法.  相似文献   

8.
面向工艺设计的制造过程建模   总被引:8,自引:0,他引:8  
基于工艺设计对产品制造成本、质量和效率的重要影响,提出了一种基于工艺设计的制造过程建模方法,以通过对过程模型的仿真,预测、分析和优化工艺设计效果。基于对制造过程的特征分析,采用面向对象的方法,首先将制造过程定义为一组成对象,并划分为制造活动、过程控制和制造资源3类成分对象,建立了制造过程类结构模型和动态过程模型。分别定义了工序类、制造资源类和过程控制类的类结构模型,以及各类对象的方法和属性。基于这些模型开发了一种计算机辅助工艺设计系统,可快速、自动地构建工艺设计定义的制造过程模型,并对过程参数(成本、时间)、切削加工、工件物流进行计算和仿真。  相似文献   

9.
滚齿是重要的齿轮加工工艺之一,其加工成形过程复杂,并且涉及较多切削参数。为了量化切削参数对滚切力的影响,研究了一种基于三维几何仿真的滚齿切削力预测方法。根据滚刀和工件的几何参数以及切削参数确定加工过程中滚刀和工件的相对位置和运动关系,在CAD环境中实现滚齿运动过程的三维仿真,并得到未变形切屑的三维模型;根据选定的切削力模型,利用未变形切屑模型的截面尺寸计算单个切削刃的瞬时切削力,得到滚齿的整体受力过程;定量分析了不同切削参数对滚齿切削力的影响。该预测模型有助于滚齿加工工艺过程的优化设计,以提升加工质量和效率,降低加工成本。  相似文献   

10.
针对铣削稳定性评价指标极限切削深度随加工位置改变而变化,导致铣削工艺参数优化模型中稳定性约束具有不确定性问题,结合不同加工位置刀具频响函数和切削稳定性理论,建立加工空间极限切削深度广义回归神经网络(GRNN)预测模型,基于该GRNN模型完善铣削稳定性约束条件,进而构建以机床各运动部件位移与粗/精加工切削参数为变量,以粗/精加工总切削时间为目标的多工步数控平面铣削工艺参数优化模型,采用粒子群算法(PSO)求解该优化模型。以某企业加工中心展开实例研究,获取机床加工位置和粗/精加工主轴转速、切削深度、切削宽度、每齿进给量的优化配置,优化后粗/精加工总切削时间比优化前缩短22.47%,并通过该配置下的无颤振铣削加工验证了优化模型的有效性。  相似文献   

11.
传统切削数据库通常不包含零件加工过程的全部信息,不提供切削参数的可行区间。本文提出一种基于切削稳定性模型的切削数据库系统,开发了一套基于B/S架构的切削数据库系统,得到了无颤振的切削参数可行区间,并通过铣削试验验证了系统可行性。  相似文献   

12.
针对我国制造企业对切削参数优化及切削数据库的需求,在已有大量切削数据的基础上,研究并建立了切削数据结构模型,阐述了该系统的总体结构及设计思想,构造了B/S结构的网络化切削参数数据库系统,介绍了系统各子功能模块构成,并结合加工动力学仿真优化技术提出了一种切削数据评价及优化的实现方法.  相似文献   

13.
基于规则推理的切削数据库的建立与研究   总被引:2,自引:1,他引:1  
利用基于规则推理技术,可为建立切削数据库提供一个切实可行的方法,即将切削加工过程中的参数选取经验存储到数据库,并使之能科学地选择刀具、切削用量等工艺参数。本文通过将规则引入数据库,建立并分析了基于规则推理的产生式系统的结构,提出了切削数据库的功能模型和系统结构。  相似文献   

14.
激光切割金属板材过程中,工艺条件和表面质量之间存在较为复杂的对应关系;提出基于BP神经网络的激光切割质量控制模型,建立工艺条件与切割面粗糙度之间的关系模型,试验测量点取距切割下边缘1.5mm处表面粗糙度Ra;提出利用模拟退火算法提高多层神经网络的拟合精度,改善网络的收敛性能;切割试验样本设计拟采用星点设计法,用于提高神经网络训练样本的信息量和可靠性;经过实际切割不锈钢板材,验证上述方法具有一定的可靠性和应用价值。  相似文献   

15.
热切割机数控系统在加工过程中需要处理大量数据,为提高数据流操作的稳定性与高效性,提出了将Access数据库技术应用到数控系统数据存储中的一种方法。分析了热切割加工工艺参数及加工代码格式,设计了相应数据库字段,构建了热切割加工工艺参数表、加工程序表以及割缝补偿表,进而构建了热切割数控系统数据库,进行了数控系统数据库读写实验。实验结果表明,数据库读写性能稳定、效率高,满足热切割数控系统的加工要求。  相似文献   

16.
The paper deals with the optimisation model of cutting variables by which the manufacturing costs should be reduced to the lowest possible value. The optimisation strategy takes place in two steps by taking into account all input variables (technological limitations). First, the tool geometric variables are changed using selected cutting variables; in this way, the smallest cutting force variables are determined. Geometric variables for the case of the smallest cutting force are used for the second optimisation step in which the cutting variables are changed. Optimisation of the cutting variables is tested practically under workshop conditions. In this way, important information about the validity of the optimised values is obtained. If there are significant differences between the theoretical and practical values, then the theoretical values must be corrected (correction of cutting variables). As the study of the cutting processes requires much experimental and theoretical work and applies to a very large body of data, we have organised an information centre for cutting conditions. When forming the information centre for cutting conditions, it was impossible to avoid the requirement that the technological database must be actively included in the computer-supported integrated manufacture.  相似文献   

17.
切削刀具制造商面临围绕大量工件材料和加工特征为客户提供合理刀具和切削参数的现状,切削工艺规划的核心步骤也是刀具和切削参数的确定。确定刀具和切削参数一般多从零件材料角度出发,可能导致工件与刀具不匹配。文中提出面向加工特征的刀具和切削参数计算机辅助选择系统的开发。系统包括车削特征、铣削特征、钻削和镗削加工特征,系统利用特征图形作为用户交互式接口,采用关系数据库结合数据驱动和规则推理逻辑来选择刀具和切削参数,利用数学模型计算过程参数包括单工步加工工时、切削功率、最大粗糙度等,并辅助制定工序。以车刀和车削参数选择为例,介绍该系统的实现方法。该系统可以辅助设计师及工艺人员选择合理的刀具和切削参数。  相似文献   

18.
为解决在选择切削参数时如何参考工件的几何特征信息这个难题,借用物元理论对切削参数进行建模,并建立一种基于特征的具有通用性的切削参数数据结构,利用物元理论中的对象识别和评判方法,解决了加工特征的相似性查询问题,并开发了基于特征的金属切削数据库系统。  相似文献   

19.
Nomex蜂窝复合材料的超声切割技术克服了传统高速铣削中存在的工件固持困难、加工粉尘大等问题。基于断裂力学研究Nomex蜂窝复合材料的超声切割机理,为超声切割工艺参数优化以及超声波声学主轴的优化设计提供理论依据。根据直刃刀超声切割Nomex蜂窝复合材料加工工艺,建立直刃刀的运动学方程,分析得到超声切割断续加工过程中直刃刀与材料相互作用时间关系;应用断裂力学理论,引入动态应力强度因子建立蜂窝复合材料的断裂韧性模型,研究超声切割作用下蜂窝复合材料的微观断裂过程,根据直刃刀位移和裂纹扩展的关系模型,分析切削力的影响因素,并进行仿真研究。研制了超声切割工艺试验台,对蜂窝复合材料进行了有超声和无超声切割加工的对比试验,试验结果显示超声切割显著地减小了切削力,也证实了冲击产生的微裂纹扩展是蜂窝复合材料在直刃刀超声切割作用下,切割力减小的主要原因。理论分析和试验研究表明基于断裂力学的Nomex蜂窝复合材料超声切割机理研究具有有效性和合理性。  相似文献   

20.
郭雪琪  安平  杨武  魏智 《工具技术》2017,51(4):33-37
针对石英玻璃的微铣削过程,采用离散元模拟软件PFC3D建立真实的离散元模型,模拟裂纹的生成与扩展情况,得到铣削力曲线图以及铣削过程的较优加工工艺参数,并通过铣削力试验验证了石英玻璃三维离散元模型有效性及离散元法模拟石英玻璃切削过程的合理性。基于模型和试验一致,得出不同铣削参数下铣削力的变化规律。结果表明:铣削力随主轴转速的增加则先减小后增加再减小,随切削深度和进给速度的增加而增加,随刀具倾角的增加则先增加后减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号